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Preface

High-frequency trading (HFT) is now the norm for trading finan-
cial assets in electronic markets around the world. Be it in equities,
foreign exchange, futures or commodities, high-frequency traders
provide not only the bulk of volume in these markets, but also
most liquidity provision. In so doing, high-frequency trading has
changed how individual markets operate and how markets dynam-
ically interact. In this book, we give a comprehensive overview of
high-frequency trading, and its implications for investors, market
designers, researchers and regulators.

Our view is that HFT is not technology run amok, but rather a
natural evolution of markets towards greater technological sophis-
tication. Because markets have changed, so, too, must the way that
traders behave, and the way that regulators operate. Low-frequency
traders (shorthand for everyone who does not have their own high-
performance computers and co-located servers) need to understand
how high-speed markets work in order to get effective execution,
minimise trade slippage and manage risk. Regulators, who face
the daunting task of crafting new rules and regulations for high-
frequency environments, need to understand better how and why
high-frequency markets falter. Perhaps most importantly, individual
investors need to understand that high-frequency markets need not
be the milieu of Terminator-like adversaries, but rather, with care-
ful design and regulation, can be venues in which they can trade at
lower costs and better prices than ever before.

The chapters in this book take on many facets of high-frequency
trading, but for any of them to make sense it is important for our
readers to understand some basic features of high-frequency trading.
First, HFT is microstructure based, and it operates to exploit the inef-
ficiencies in how markets operate. A market’s microstructure refers
to the rules and design of the trading platform. All microstructures
have inefficiencies arising, for example, from tick size specifications,
matching engine protocols or latency issues in sending orders both
within and across markets.! By exploiting these inefficiencies, at its
best HFT lowers transaction costs and enhances market efficiency; at
its worst, HFT takes advantage of resting orders, “simple-minded”
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trading algorithms and pricing conventions to transfer profits from
low-frequency traders to high-frequency traders. The latter outcome
arises because HFT is also strategy based: it is designed to take
advantage of predictable behaviours in markets. Thus, momentum
ignition strategies or attempts to move quote midpoints artificially
are all designed to fool and exploit “uninformed” traders, who rely
on simple trading rules and strategies.

A third feature of HFT is that it uses a new type of information.
Traditionally, informed traders in markets were those who had bet-
ter information on asset fundamentals, but HFT information relates
to the trading process and not to the asset itself. At longer time hori-
zons, fundamental information predominates in determining asset
prices, but in the very short run it is trading information that mat-
ters. Thus, information on order flows, the structure of the book
or the “toxicity” of the market can all help a high-frequency trader
predict where market prices are going both in a single market and
across markets. This trading information is useful because of the
millisecond speed at which HFT algorithms operate. Consequently,
to shave a few milliseconds off order transmission, it becomes opti-
mal to spend hundreds of millions of US dollars to lay a new cable
underneath the Atlantic Ocean (as was done in Project Hibernia)
or to build towers between New Jersey and Chicago (as is being
done in a joint project between Nasdaq and the CME) to send
orders via microwaves, thereby improving transmission speed rela-
tive to ground-based fibre-optic cables. It is only natural to question
whether such expenditures are socially optimal.

It would be a mistake, however, to believe that HFT is only about
speed. There have been, and always will be, some traders who
are faster than others. In today’s markets, distinctions are being
drawn between algorithmic traders (machines that are programmed
to follow specific trading instructions), high-frequency traders (also
machines but typically faster than algorithmic traders and may have
more complex trading behaviours) and ultra-high-frequency traders
(machines that use the fastest supercomputers, lowest latency link-
ages, etc). Indeed, it is safe to say that the latencies of the larger
broker/dealer firms are now at the levels HFT firms were at just one
or two years ago. The speed differentials between different trader
groups will continue to decrease, but the strategic nature of HFT will
remain as an important differentiator in markets.
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It would also be a mistake to assume that all HFT strategies
are the same. Just as markets, and their microstructures, differ, so
too do the behaviours of high-frequency traders. Strategies that
are optimal in short-term interest rate futures, for example, are
very different from strategies that are successfully deployed in
equity markets. Moreover, these strategies are constantly evolving as
high-frequency traders employ more complex and technologically
advanced approaches to trade within and across markets.

These two points are the subject of the first four chapters of the
book. David Easley, Marcos Lépez de Prado and Maureen O’Hara
argue in Chapter 1 that HFT is not simply faster trading, but
instead represents a new paradigm for trading financial assets. This
paradigm is volume-based, reflecting that machines operate not on
a time basis but rather on an event basis. Recognising this new
paradigm is crucial for understanding why high-frequency mar-
kets are not just the same old markets “on steroids”. These authors
explain how, acting strategically, high-frequency algorithms interact
with exchange-matching engines to exploit inefficiencies in markets
and predictabilities in other traders” behaviours. This chapter sets
the stage for understanding how high-frequency trading affects low-
frequency traders, and it suggests strategies that LFTs should adopt
to thrive in this environment.

Chapters 2—4 then discuss in detail how high-frequency trad-
ing “works” in equity markets, fixed-income futures markets and
foreign exchange markets. Their authors discuss the particular
strategies used and how these strategies have evolved over time.
In Chapter 2, Michael G. Sotiropoulos describes how equity trading
algorithms work and how they can be structured to meet the needs of
a wide variety of market participants. He discusses how trading has
evolved from simple deterministic trade algorithms, such as volume
weighed average price (VWAP), to new adaptive algorithms that
adjust trading speeds to a variety of high-frequency indicators such
as queuing time and order book imbalance. Sotiropoulos also dis-
cusses how incorporating order protection strategies into adaptive
algorithms can minimise transaction costs for low-frequency traders.

In Chapter 3 Robert Almgren examines the distinctive features
of trading futures on interest rate products. Fixed-income trading
algorithms must have special defensive features built in to protect
the trader from the shocks arising from public information events

xvii



HIGH-FREQUENCY TRADING

such as Treasury auction results or scheduled government data
releases. Moreover, fixed-income futures are cointegrated, meaning
that individual contracts are not independent of other contracts due
to linkages with the term structure, varying maturities, and the like.
Thus, algorithmic strategies must take account of the inherent ten-
dency for prices to move congruently. Almgren describes analytical
approaches to characterising cointegration and how this can be used
for price prediction. He also highlights the role played by priority
rules in affecting trading strategies.

In Chapter 4, Anton Golub, Alexandre Dupuis and Richard B.
Olsen describe the unique market structure of foreign exchange (FX)
trading and the main algorithms used in the industry. FX markets
feature a spectrum of traders from manual traders (ie, humans using
a graphical user interface) to ultra-high-frequency traders submit-
ting (and cancelling) thousands of orders over millisecond ranges.
This chapter highlights the different roles played by these traders,
and in particular draws attention to the changing composition of
trading during periods of market instability. Olsen et al also sug-
gest a new priority rule to enhance market liquidity production and
stability.

Having established the basic frameworks used in high-frequency
trading, we then turn in Chapters 5 and 6 to the foundations of
high-frequency trading by examining the roles of machine learning
and “big data”. In Chapter 5, Michael Kearns and Yuriy Nevmy-
vaka discuss the role that machine learning plays in developing
predictive algorithms for high-frequency trading. Machine learning
is an area of computer science that draws on research in statistics,
computational complexity, artificial intelligence and related fields to
build predictive models from large data sets. Kearns and Nevmy-
vaka demonstrate how techniques such as reinforcement learning
can determine optimal dynamic state-based policies from data; for
example, such an approach could be used to determine an optimal
execution algorithm that decides whether to slow down or speed
up trading depending upon current microstructure data. They also
show how machine learning can use order book data to predict
future price movements. This chapter, while showcasing the exten-
sive technological sophistication underlying high-frequency trad-
ing, also makes clear the role that “human inputs” have in designing
such analytical tools.

Xviii



PREFACE

In Chapter 6, Kesheng Wu, E. Wes Bethel, Ming Gu, David
Leinweber and Oliver Riibel look at another dimension of high-
frequency trading: the role of “big data”. Algorithmic and high-
frequency trading generate massive amounts of hard-to-process
data. Some of this comes from trade executions, but a much greater
amount arises from the placement and cancellation of orders both
within and across markets. Handling, let alone analysing, such mas-
sive databases (which can be of the order of a petabyte) is almost
impossible using standard data management techniques. Wu et al
discuss how new file formatting and computational techniques can
be applied to high-frequency trading data. They use these techniques
to test the predictive ability of VPIN, a measure of order toxicity, for
future volatility.? Their results illustrate how “big data” can play a
critical role in testing new risk-management tools for high-frequency
markets.

The remaining four chapters focus on the implications of high-
frequency trading for markets, traders and regulators. In Chapter 7,
David Easley, Marcos Lépez de Prado and Maureen O’Hara exam-
ine how volatility contagion can take place across markets. High-
frequency market makers often engage in inter-market arbitrage, a
strategy in which market makers “lift” liquidity by placing bids in
one market and asks in another. Easley et al show how this results
in order toxicity spreading across markets, which in turn results in
volatility contagion. Using data from energy futures, they demon-
strate that these contagion effects can be sizeable. These results show
that the volatility process in high-frequency markets is now interde-
pendent across markets, a result of interest to both researchers and
regulators.

George Sofianos and JuanJuan Xiang consider in Chapter 8 the
challenges facing low-frequency traders in markets with high-
frequency traders. Trading algorithms are designed to minimise a
trade’s execution cost, and they generally do so by splitting orders
into many smaller pieces that then have to be traded over time in
the market. If high-frequency traders can detect in market data the
early trades in the sequence (known as the algorithm’s “footprint”),
then they can front-run the subsequent trades and profit at the low-
frequency trader’s expense. Sofianos and Xiang discuss how feasi-
ble this is, and present an extensive empirical study to determine
how easy it is to find these patterns in the data. The analysis here
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demonstrates how important it is for low-frequency traders to use
sophisticated trading techniques in high-frequency settings.

This issue of new trading tools and techniques is also the focus
of Chapter 9. Terrence Hendershott, Charles M. Jones and Albert J.
Menkveld develop a new approach for measuring the effect of tran-
sitory trading costs for transaction cost analysis. The ability to mea-
sure trading costs is crucial for institutional traders, and is greatly
complicated when algorithms chop orders into sequences of trades.
Hendershott et al construct an efficient price estimator that allows
an enhanced ability to compute the execution cost of a large trade.
Their analysis shows the importance of temporary price effects on
trading costs, and it illustrates the need to develop new analytical
tools designed for high-frequency settings.

Our final chapter turns to the challenges of regulation in a high-
frequency world. In Chapter 10, Oliver Linton, Maureen O’'Hara and
J. P. Zigrand argue that, while HFT has increased market quality on
average, it has made markets more vulnerable to episodic instability.
This is due, in part, to the changing nature of liquidity provision in
high-frequency markets, but this vulnerability also arises because
HFT has opened the door to both new forms of manipulation and
market failures arising from errant technology. Linton et al argue for
anew ex ante regulatory approach that relies on technology to moni-
tor markets in real time, pre-specifies regulatory actions in the event
of faltering markets and applies across, and not merely within, mar-
ket settings. They also examine a variety of existing and proposed
regulatory reforms in the US and Europe.

We hope this book makes the high-frequency world more acces-
sible to our readers.
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1 Latency is a measure of time delay in a system. In the context of trading financial assets, it
refers to the time it takes to get orders from a trader’s computer to the trading venue (and,
depending on context, it may also include the time to confirm trades back to the trader).
Latencies in high-frequency markets are often measured in milliseconds (thousandths of a
second), or even microseconds (millionths of a second).

2 Volume-synchronised probability of informed trading (VPIN) is a measure of order imbalance
and it signals when the order flow is likely to be disadvantageous, or “toxic”, to market
makers. High toxicity can cause market makers to withdraw from the market, and this can
lead to disruptions in liquidity provision. Because of this linkage, VPIN can signal future
toxicity-related volatility in markets: an issue of importance to both regulators and traders.
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The Volume Clock: Insights into
the High-Frequency Paradigm

David Easley; Marcos Lopez de Prado;

Maureen O’Hara
Cornell University; RCC at Harvard University; Cornell University

Legend has it that Nathan Mayer Rothschild used racing pigeons to
front-run his competitors and trade on the news of Napoleon’s defeat
at Waterloo a full day ahead of His Majesty’s official messengers
(Gray and Aspey 2004). Whether this story is true or not, it is unques-
tionable that there have always been faster traders. Leinweber (2009)
relates many instances in which technological breakthroughs have
been used to most investors” disadvantage. The telegraph gave an
enormous edge to some investors over others in the 1850s, per-
haps to a greater extent than the advantages enjoyed today by
high-frequency traders. The same could be said, for example, of
telephone traders in the 1870s, radio traders in the 1910s, screen
traders in the 1980s. Some traders have always been much faster
than others, so what is new this time around? If there is something
truly novel about high-frequency trading (HFT), it cannot only be
speed.

And yet, high-frequency traders have been characterised as “chee-
tah traders”, an uncomplimentary allusion to their speed and charac-
ter. The reality is, as usual, more complex. Today’s high-frequency
markets are not the old low-frequency markets on steroids. To be
sure, speed is an important component of high-frequency’s success.
However, in this chapter we shall argue that there is much more to it.
We shall make the case that what lies at the heart of HFT is a change
in paradigm.
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THE NEW TRADING PARADIGM

The US “flash crash” of May 6, 2010, pushed HFT into the spotlight.
To understand what led to the emergence of high-frequency trading,
however, we have to turn the clock back five years. HFT strategies
were made possible by legislative changes in the US (Regulation
National Market System law of 2005, known as “Reg NMS”) and
Europe (the Markets in Financial Instruments Directive, or “MiFID”,
in force since November 2007), preceded by substantial technologi-
cal advances in computation and communication. High-speed trad-
ing had been technologically possible for many years, but it was
legislative action that made HFT profitable.

MiFID fostered greater competition among brokers, with the
objective of improving liquidity, cohesion and depth in finan-
cial markets. It allowed new, highly technological competitors to
enter the European markets, thereby introducing competition for
what had been a relatively quiescent, exchange-dominated market
structure. Similarly, Reg NMS encouraged competitiveness among
exchanges by allowing market fragmentation. Reg NMS was wildly
successful at this, as the market structure of 13 equity exchanges
and 40 or more alternative venues (dark pools, dealer desks, etc)
attests. Cohesion was supposedly ensured in the US through a mech-
anism for the consolidation of individual orders processed via mul-
tiple venues (the “National Best Bid and Offer” (NBBO)).! These
changes, combined with decimalisation of equity markets, resulted
in an “arms race” to develop the technology and quantitative meth-
ods that could extract the last cent of profitability from trading while
serving the demands of market participants.

The high-frequency strategies that developed are actually very
diverse. It would be a mistake, for example, to conflate the HFT
strategies of cash equities and the HFT strategies of futures on equity
indexes, because HFT is not particularly related to macro factors
(such as asset class), but it is intimately related to market microstruc-
tural factors. While cash equity markets are fragmented and deci-
malised, the markets for equity futures are not, and so the first type
of HFT strategies have little in common with the second.

Many high-frequency strategies model the dynamics of the dou-
ble auction book. This allows HF traders to place numerous inde-
pendent bets every day on the same instrument or portfolio, thus
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taking advantage of the multiplicative effect postulated by the “fun-
damentallaw of active management”, ie, that a tiny predictive power
on a sufficiently large number of independent bets yields a high
information ratio and thus a profit (Grinold 1989). The goal is to
exploit the inefficiencies derived from the market’s microstructure,
such as rigidities in price adjustment within and across markets,
agents’ idiosyncratic behaviour and asymmetric information. As a
consequence of this higher frequency, the identification of oppor-
tunities, risk control, execution and other investment management
activities must be automated. Not all algorithmic trading occurs at
high frequency, but all high-frequency trading requires algorithms.

It is useful to contrast the divergent worlds of the low-frequency
(LF) traders and the HF traders. Financial analysts” conferences are
one milieu where LF traders converse on subjects as broad and
complex as monetary policy, asset allocation, stock valuations and
financial statement analysis. HFT conferences are reunions where
computer scientists meet to discuss Internet protocol connections,
machine learning, numeric algorithms to determine the position of
an order in a queue, the newest low-latency co-location architec-
ture, game theory and, most important of all, the latest variations to
exchanges’” matching engines. It could be concluded, correctly, that
the LF traders and the HF traders are seemingly worlds apart.

The issues surrounding exchange-matching engines are a case in
point. Economists and finance professionals often talk about the mar-
ket’s auctioning process as a given, but it is microstructure theorists
who wade into the minutiae of how prices and volumes are actu-
ally formed. Because the devil is in the detail, understanding how
exactly the order flow is handled, and thus how trades and prices
are formed, allows potential profits to be made for those who can
manipulate these market dynamics (Figure 1.1). Over short intervals
of time, prices are not the random walks so beloved by the efficient
market hypothesis, but can instead be predictable artefacts of the
market microstructure. Thus, the paradox: billions are invested in
HFT research and infrastructure, topics that LF traders do not even
recognise as an issue.

Given their dissimilar backgrounds, it is hardly surprising that
HFT professionals would operate under a different paradigm from
their LFT peers. But how does this different background translate
into a new investment paradigm?
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Figure 1.1 Simplified depiction of a matching engine’s host

Prices and volumes are determined by the matching engine. HF traders study its
design very carefully, in an attempt to uncover a structural weakness in the double
auctioning process. Eurex has been particularly transparent in describing its archi-
tecture and functionality, in an attempt to level the playing field across customers.
* Additional time stamps are available in messages from the persistency layer.
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THE MEANING OF TIME

Time can be understood as a measuring system used to sequence
observations. Since the dawn of civilisation, humans have based
their time measurements in chronology: years, months, days, hours,
minutes, seconds and, more recently, milliseconds, microseconds,
etc. Because we have been brought up to think in terms of chrono-
logical (chrono) time, we can hardly visualise a different way of
scheduling our lives. However, this is a rather arbitrary time sys-
tem, arguably due to the key role played by the Sun in agrarian
societies.

Machines operate on an internal clock that is not chronological,
butevent-based: the cycle. Amachine will complete a cycle at various
chrono rates, depending on the amount of information and complex-
ity involved in a particular instruction. For the reasons mentioned
earlier, HFT relies on machines; thus, measuring time in terms of
events is only natural. Thinking in volume time (or any other index
of activity) is challenging for humans. But for a “silicon trader”, it
is the natural way to process information and engage in sequen-
tial, strategic trading. For example, HF market makers may aim to
turn their portfolio every fixed number of contracts traded (volume
bucket), regardless of the chrono time, in an attempt to keep a certain
market share.

The paradigm in this world is “event-based time”. The simplest
example involves dividing the session into equal volume buckets
(eg, into 200,000 contract increments, or 20,000 share buckets). In
fact, working in volume time presents significant statistical advan-
tages: this time transformation removes most intra-session seasonal
effects; it allows a partial recovery of normality and the assumption
of independent and identical distribution; sampling in a volume-
clock metric addresses the problem of random and asynchronous
transactions, which is a major concern when computing correlations
on high-frequency data.? The idea of modelling financial series using
a different time clock can be traced back to the seminal work of Man-
delbrot and Taylor (1967) and Clark (1970, 1973). Ané and Geman
(2000) is another notable, more recent contribution. Mandelbrot and
Taylor open their paper with the following assertion:

Price changes over a fixed number of transactions may have a
Gaussian distribution. Price changes over a fixed time period may
follow a stable Paretian distribution, whose variance is infinite.
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Since the number of transactions in any time period is random, the
above statements are not necessarily in disagreement.... Basically,
our point is this: the Gaussian random walk as applied to transac-
tions is compatible with a symmetric stable Paretian random walk
as applied to fixed time intervals.

In other words, Mandelbrot and Taylor advocated for recov-
ering normality through a transaction-based clock, moving away
from chronological time. This would treat transactions of different
sizes equally. Clark (1973) suggested a related variant, arguing for
a volume-based clock. Mandelbrot (1973) explained the difference
between them in the following terms:

There is — as I have said — no dispute between us about the value
of the concept of subordinated process. Clark’s approach is an
interesting and natural modification of one described by Mandel-
brot and Taylor. The notion is that price change would cease to
be erratic and would reduce to the familiar Brownian motion if
only it were followed in an appropriate “local time” different from
“clock time”. Taylor and I had thought that local time might coin-
cide with transaction time, while Clark links it with volume. He
also has the merit of having investigated this hunch empirically....
However, it should be kept in mind that if price variation is to
proceed smoothly in local time, then local time itself must flow
at random and at a highly variable rate. Consequently, as long as
the flow of local time remains unpredictable, concrete identifica-
tion of the applicable local time leaves the problems of economic
prediction unaffected.

Mandelbrot’s rather negative conclusion regarding the role of
“local time” reflected a basic reality of the markets in his day: the
decisions that participants made, eg, estimating volatilities over a
day or returns over a month, were all based on chronological time.
Consequently, recovering normality in what he called “local time”
(ie, transaction or volume time) did not seem helpful, because there
is no way to translate the forecast back into chronological time.
However, as we have argued, HFT operates in event-based time
(such as transaction or volume), thus removing the need for this
translation. HFT will monetise accurate forecasts of E-mini S&P 500
futures volatility over the next 50,000 contracts, whatever the num-
ber of (night-session) hours or (day-session) milliseconds it takes
to exchange that volume. HFT market makers have little use for a
model that attempts to forecast volatility over a chronological time
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Figure 1.2 Partial recovery of normality through a price sampling
process subordinated to a volume clock

0.25 — Time clock

— Volume clock

0.201 | |[—— Normal distribution
(same bins as time clock)

The grey line is the distribution of standardised price changes for the E-mini
S&P 500 futures when we sample every minute. The black line is the equiva-
lent if we sample every % of the average daily volume. The black dashed line
is the standard normal distribution. The sample goes from January 1, 2008, to
October 22, 2010.

horizon, because they must keep their inventory under control in
volume time (eg, by turning their inventory over for every 50,000
contracts exchanged). Being closer to actual normality and indepen-
dence of observations (Figure 1.2) allows the application of standard
statistical techniques, which means faster calculations, shorter cycles
and thus faster reaction.

The upshot of this new paradigm is clear: even if connectivity
speed ceased to be a significant edge, HFT would still exist.

MORE THAN SPEED

Easley et al (1996) linked liquidity to informational asymmetry by
identifying how market makers adjust their bid—ask spreads to the
probability of informed trading (PIN). Because informed traders
monetise their superior knowledge of a security’s future price by
adversely selecting uninformed traders, market makers must update
their quoted levels and sizes in real time in a manner that reflects
their estimate of PIN. HF traders react to information leaked by
LF traders in order to anticipate their actions. Direct market access
(DMA) allows the deployment of this kind of strategic sequential
trading logic to market venues.
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To be clear, strategic sequential trading is not particular to HFT.
In October 1990, sterling joined the European Exchange Rate Mech-
anism (ERM). Under that agreement, the Government would have
to intervene in order to ensure that the exchange rate between the
pound and other currencies would not fluctuate beyond a 6% band.
Traders knew that, with an inflation rate three times that of Ger-
many despite high interest rates, in addition to double digit deficits,
the British Government’s position was extremely vulnerable. Thus,
a strategy could be devised to take advantage of that Government’s
predictable behaviour. On September 16, 1992 (Black Wednesday) a
group of speculators launched an uncoordinated attack to force the
withdrawal of the pound from the ERM (HM Treasury 1994).

What makes HFT such a great example of strategic sequential
trading is its “event-based” interaction with the exchange’s match-
ing engine through DMA. Its decision-making process is synchro-
nised with the speed at which actions take place, thus acting upon
the revelation of new information.

A good metaphor for strategic sequential trading can be found
in poker or chess. A chess player makes moves at different speeds
during a game, depending on several factors: superiority over the
adversary, stage of the game, amount of material lost, computational
power, experience with the existing position, time remaining before
the end of the game, etc. It would make little sense for a chess player
to attempt to make moves every minute (even if that were possi-
ble). Instead, moves are made whenever the processing of the new
information permits, according to the aforementioned factors. With
every move, each player reveals information about their knowledge
of the game, which can be used by an experienced adversary to
lead the opponent to an uncomfortable situation. Once the adver-
sary has made a move, the player has new information on the board
to be cycled. Players try to anticipate each other’s moves several
steps ahead, and force their adversary to make an error. The next
move is conditional upon the opponent’s previous moves as well
as their own. There are sacrifices, calculated “mistakes” and a lot of
deception. All of these features are present in HFT.

Predatory algorithms constitute a very distinct species of in-
formed traders, because of the nature of their information and
the frequency of their actions. Such HFT algorithms exploit a
microstructural opportunity in a way similar to that in which large
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speculators exploit a macroeconomic inconsistency. Rather than
possessing exogenous information yet to be incorporated in the mar-
ket price, they know that their endogenous actions are likely to trig-
ger a microstructure mechanism, with a foreseeable outcome. Their
advent has transformed liquidity provision into a tactical game. We
now list a few examples that are discussed in the literature.

¢ Quote stuffers: these engage in “latency arbitrage”. The strat-
egy involves overwhelming an exchange with messages, with
the sole intention of slowing down competing algorithms,
which are forced to parse messages that only the originators
know can be ignored (NANEX 2010).

¢ Quote danglers: this strategy sends quotes forcing a squeezed
trader to chase a price against their interests. O'Hara (2010)
presents evidence of their disruptive activities.

e Liquidity squeezers: when a distressed large investor is forced
to unwind their position, the squeezers trade in the same direc-
tion, draining as much liquidity as possible. As a result, prices
overshoot and they make a profit (Carlin et al 2007).

e Pack hunters: predators hunting independently become aware
of each other’s activities, and form a pack in order to max-
imise the chances of triggering a cascading effect (Donefer
2010; Fabozzi et al 2011; Jarrow and Protter 2011). NANEX
(2011) shows what appear to be pack hunters forcing a
stop loss. Although their individual actions are too small to
raise the regulator’s suspicion, their collective action may be
market-manipulative. When that is the case, it is very hard to
prove their collusion, since they coordinate in a decentralised,
spontaneous manner.

Arnuk and Saluzzi (2008) estimate that the effect of all this toxic
trading is that up to 10,000 orders are entered for every single trade
in NYSE stocks. While this may be an overstatement of the prob-
lem, even the US Securities and Exchange Commission (2011, p. 13)
admits that “a vast majority” of orders are now cancelled (estimates
by TABB Group put this at 98%).2

Because of the threat posed by predators, high-frequency liquid-
ity providers must be much more tactical (an example is given in
Figure 1.3). Sometimes they may suddenly pull all orders, liquidate
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Figure 1.3 Example of a tactical liquidity provision algorithm
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This algorithm would send an order at the bid (b), wait for a passive fill (Fb=True)
and only then send an order at the offer (Counter b). At all times the probability of
an adverse change in level is monitored (pb). However, if the order at the bid has
not been filled yet (Fb=False) by the time there is an increase in the probability
of adverse level change (pb > t), then the algorithm cancels the order (b). This is
a typical sequential trading algorithm that conditions the provision of liquidity to a
limited number of scenarios. In fact, it becomes a liquidity consumer from time to
time: if the order gets filled (Fb=True) and the level drops beyond a certain stop
loss threshold (SL), the algorithm competes for liquidity (grey box).
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Figure 1.3 Continued
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their positions and stop providing liquidity altogether. This deci-
sion has more to do with computer science and game theory than it
does with valuation fundamentals. The resulting price actions may
seem absurd from an economic perspective, but because the actors
made their decisions applying a different rationale their behaviouris
perfectly sensible.* Carlin et al (2007) model how predatory trading
can lead to episodic liquidity crises and contagion.
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For the HF trader, the name of the game is not to move as fast as
possible, but rather to make the best possible move (before a com-
petitor does) with the information revealed. To understand what
this implies for market behaviour, consider the simple issue of trade
size. Easley et al (2012b) report that more than 50% of trades in the
S&P 500 E-mini futures contracts are now for one contract. Trade
frequency quickly drops beyond sizes over 10. However, trades of
size 100 are up to 17 times more frequent than trades of size 99 or
101 in the E-mini S&P 500. The reason is that many graphical user
interface (GUI) traders have buttons for trade sizes in round num-
bers. HFT algorithms know that if many participants are operating
with round numbers in a given moment of the trading session, the
market is likely to behave in a particular way. Even though trad-
ing algorithms are not intelligent in the human sense (at least not
yet), machine learning and game theory allow them to identify deep
patterns in market activity. Predictable behaviour can then be taken
advantage of by silicon traders.

Databases with trillions of observations are now commonplace
in financial firms. Machine learning methods, such as nearest-
neighbour or multivariate embedding algorithms, search for pat-
terns within a library of recorded events. This ability to process
and learn from what is known as “big data” only reinforces the
advantages of HFT’s “event-time” paradigm. It is reminiscent of
“Deep Blue”, which could assign probabilities to Kasparov’s next
20 moves, based on hundreds of thousands of past games, or why
IBM’s Watson could outplay its Jeopardy opponents.

The upshot is that speed makes HF traders more effective, but
slowing them down will not change their basic behaviour, that of
strategic sequential trading in event time.

LIKE SHEEP AMONG WOLVES?

Anumber of studies have found that HFT is beneficial in many ways
(Broogard 2012; Linton and O"Hara 2012; Hasbrouck and Saar 2013).
Evidence suggests that HFT has added liquidity to the markets,
narrowed spreads and enhanced informational efficiency. But other
studies, such as Zhang (2010), find evidence that HFT heightens
volatility. There are also concerns that HFT liquidity providers are
too tactical in nature (they can vanish when most needed). In addi-
tion, there are clearly substantial expenses needed for LF traders to

12
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develop countermeasures against predatory algorithms. The debate
regarding the social benefit of HFT is far from closed.

It appears clear that HFT cannot be un-invented, or regulated
away, without some severe market effects. HFT now controls the lig-
uidity provision process, and over 70% of all US cash equity trades
involve a high-frequency counterpart (Iati 2009). HFT participation
in futures is similarly important, with an estimated 50% or more
transactions involving HFT. While debates rage over regulatory con-
trol, there is little consensus as to what is desirable, or even feasible.
National Tobin taxes are doomed to fail, and an international agree-
ment is unlikely. It is not even clear that these measures would do
any good, other than change the rules of the game, to which HFT
strategies can easily adapt.

An alternative that seems closer to the core of the HFT paradigm is
a tax on FIX (Financial Information Exchange) messages (as opposed
to a tax on transactions). Some exchanges and regulators have pro-
posed charges on message traffic, but this would also affect algorith-
mic trading by LF traders: a form of “collateral damage” that seems
undesirable. More to the point, such changes would not completely
eliminate all sequential strategic behaviour. The new paradigm that
underlies HFT is not really about speed, so regulatory efforts to slow
“cheetah traders” miss the larger point that what is undesirable are
particular manipulative strategies, not HFT per se.

There is no question that the goal of many HFT strategies is to
profit from LFT’s mistakes. Figure 1.4 shows how easy this has
become. We took a sample of E-mini S&P 500 futures trades between
November 7, 2010, and November 7, 2011, and divided the day into
24 hours (y-axis). For every hour, we added the volume traded at
each second (x-axis), irrespective of the minute. For example, E-mini
S&P 500 futures trades that occur at 20h20m01s GMT and 20h23m01s
GMT are added together.? This analysis allows us to see the distribu-
tion of volume within each minute as the day passes, and search for
LF traders executing their massive trades on a chronological time-
space. The largest concentrations of volume within a minute tend
to occur during the first few seconds, for almost every hour of the
day. This is particularly true at 02h00-03h00 GMT (around the open
of European equities), 13h00-14h00 GMT (around the open of US
equities) and 20h00-21h00 GMT (around the close of US equities).
This is the result of time-weighted average price (TWAP) algorithms

13
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Figure 1.4 Percentage of E-Mini S&P 500 futures volume traded at
each second of every minute
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The LF trader’s decisions are typically made in “chronological time”, leaving foot-
prints that can be tracked down easily. The surface above shows a large concentra-
tion of volume (over 8%) traded in the first second of every minute around the close
of US equities. Because HF traders operate in the “volume clock”, they can act as
soon as the pattern is identified and anticipate the side and sign of LF traders’
massive orders for the rest of the hour. Most academic and practitioner models
have been devised in “chronological time”, which means that their implementation
will lead to patterns that HF traders can exploit to their advantage.

and volume-weighted average price (VWAP) algorithms that trade
on one-minute slots. A mildly sophisticated HFT algorithm will
evaluate the order imbalance at the beginning of every minute,
and realise that this is a persistent component, thus front-running
VWAPs and TWAPs while they still have to execute the largest part
of the trade.

This is just one example of how vulnerable the “chronologi-
cal time” paradigm has made LF traders, but there are dozens of
instances like this. Easley et al (2012b) show that about 51.56% of E-
mini S&P 500 futures trades between November 7,2010, and Novem-
ber7,2011, were for one contract. For example, orders of size 10 were
2.9 times more frequent than orders of size 9. Size 50 was 10.86 times
more likely than size 49. Because GUI traders tend to submit round
order sizes, silicon traders can easily detect when there is a dis-
proportionate presence of humans in the market and act on that
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knowledge. These behaviours are one likely cause of the increasing
number of short-term liquidity crises over the past few years.

But just as markets have evolved, so, too, can LF traders. Part of
HFT’s success is due to the reluctance of LF traders to adopt (or even
to recognise) their paradigm. We believe that LFT players will have
to make multiple choices in order to survive in this new HFT era,
including the following.

Choice #1: where possible, LFT firms should adopt the HFT
“event-based time” paradigm

For issues such as portfolio selection, event-based time may not
seem particularly relevant. There is an increasing awareness, how-
ever, that Alpha capture cannot be done in isolation from trading, ie,
the implementation of portfolio selection requires trading, and this
places it firmly in the purview of the HFT world. The best portfolio
selection ability is useless if HFT algorithms can free-ride on your
trades and drive up your execution costs.

Choice #2: develop statistics to monitor HFT activity and take
advantage of their weaknesses

There is some evidence that “big data” is not necessarily an advan-
tage in all instances. For example, in other work (Easley et al 2012b)
we found that “bulk volume classification” determines the aggres-
sor side of a trade with greater accuracy than the tick rule applied
on tick data! We also showed that lower-frequency statistics (such as
VPIN) can detect the toxicity in the market and determine the opti-
mal trading horizon. Monitoring market conditions for high toxicity
can be particularly beneficial for LF traders. In the US flash crash, the
Waddell and Reed trader would surely have been well advised to
defer trading rather than to sell, as they did, in a market experiencing
historically high toxicity levels.

Choice #3: join the herd

Trade with volume bursts, such as at the opening and closing of the
session, when your footprint is harder to detect. Transaction costs
now largely consist of price impact costs, and astute LF traders must
use transaction cost analysis products that are predictive, rather
than simply reactive. Naive trading strategies are simply bait for
predatory algorithms.
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Choice #4: Use “smart brokers”, who specialise in searching
for liquidity and avoiding footprints

As we have seen, HFT algorithms can easily detect when there is a
human in the trading room, and take advantage. Advanced brokers
use HFT technology in a different way. Rather than attempting to
identify patterns for Alpha-generation purposes, they avoid actions
that may leave recognisable footprints. For example, TWAP is highly
predictable and should be avoided. VWAP joins the herd, however,
inapredictable way. VWAP algorithms are insensitive to the damage
done to liquidity providers. A smart VWAP algorithm would incor-
porate a feedback mechanism that adjusts the execution horizon in
real time, as it recognises the damage done by prior child orders.
New algorithms by the more sophisticated brokers use volume pat-
terns, dark executions and the like to reduce their trading footprint
(see Easley et al (2013) for an example).

Choice #5: trade in exchanges that incorporate technology to
monitor order flow toxicity

Toxic order flow disrupts the liquidity provision process by ad-
versely selecting market makers. An exchange that prevents such
disruptions will attract further liquidity, which in turn increases the
corporate value of its products. One way to avoid disruptions is to
make it harder for predators to operate in that exchange. Exchanges
have been changing their trading systems to cater to HF traders (and
the resulting liquidity they provide). But exchanges could also mod-
ify their matching engines to respond to toxicity changes that can
impair liquidity provision to LF traders.

Choice #6: avoid seasonal effects

Predatory algorithms exploit humans’ inclination towards pre-
dictable seasonal habits, such as end-of-day hedges, weekly strat-
egy decisions, monthly portfolio duration rebalances and calendar

rolls. Smart LFT trading will avoid these easily exploitable seasonal
habits.

CONCLUSION

HFT is here to stay. The speed advantage will gradually disappear, as
itdid in previous technological revolutions. But HFI’s strategic trad-
ing behaviour, executed by automated systems interacting directly
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with the exchange’s double auction order book, is more robust.
Strategic traders have little trouble in adapting to new rules of the
game; “big data” allows them to train their algorithms before deploy-
ment. Advances in machine learning and microstructure theory will
compensate for the loss of speed advantage.

Part of HF traders’ success is due to LF traders’ reluctance to adopt
the volume-clock paradigm. However, LF traders are not completely
defenseless against HF traders. Whenever a new predator makes its
appearance in a habitat, there is a shock period until the hunted
species adapt and evolve. There is a natural balance between HF
traders and LF traders. Just as, in nature, the number of predators
is limited by the available prey, the number of HF traders is con-
strained by the available LFT flows. Rather than seeking “endan-
gered species” status for LF traders (by virtue of legislative action
like a Tobin tax or speed limit), it seems more efficient and less intru-
sive to starve some HF traders by making LF traders smarter. Carrier
pigeons or dedicated fibre optic cable notwithstanding, the market
still operates to provide liquidity and price discovery, only now it
does it very quickly and strategically.

We thank Robert Almgren, Peter Carr, David Leinweber, Riccardo
Rebonato, Jamie Selway and George Sofianos for helpful com-
ments. This chapter was originally published in the Journal of
Portfolio Management (see Easley et al 2012c).

1 O’Hara and Ye (2011) present evidence that fragmentation has not degraded market quality
in the US. Thus, Reg NMS accomplished its goal of creating a single virtual market with many
points of entry.

2 An HFT application can be found in Easley et al (2012a).
3 See Patterson and Ackerman (2012).

4 US Securities and Exchange Commission Chairman Mary Shapiro made this point in her tes-
timony before the Subcommittee on Capital Markets, Insurance and Government Sponsored
Enterprises of the United States House of Representatives Committee on Financial Services
(US Securities and Exchange Commission 2010).

5 We are using the GMT convention for time, as GLOBEX does.
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Execution Strategies in Equity Markets

Michael G. Sotiropoulos
Bank of America Merrill Lynch

In this chapter we discuss strategies, models and implementations
used by large brokerage firms offering agency trading services to
their clients. We focus on equities, although several of these meth-
ods and techniques are applicable or easily adaptable to other asset
classes.

Information technology and regulatory changes (most notably
Regulation National Market System (Reg NMS) in the US and Mar-
kets in Financial Instruments Directive (MiFID) in Europe) have
drastically changed equities markets since the early 2000s. The ease
and efficiency of electronic access and the opening up of liquid-
ity provision to all market participants has led to a low latency,
multi-venue marketplace, where large block trading has become
rare and liquidity is always at a near critical point. This new market
microstructure is the result of high-frequency algorithmic trading,
defined as the execution of orders via a computerised, rules-based
trading system. From a tool of automating repetitive tasks in its early
days, algorithmic trading has become the dominant mode of quoting
and transacting in equity markets.

Trading algorithms have very small reaction times to fluctuations
in liquidity and price. Yet, the markets remain largely stable, with
bounded bid-ask spread and price volatility. This is primarily due to
the heterogeneous return objectives and investment horizons of the
market participants. Agent heterogeneity has also created the high-
frequency trading (HFT) debate about the value that low latency
machine trading adds to the investment and price discovery pro-
cess. Here we take the point of view that HFT is a market fact. Our
objective is to understand its potential and limitations.
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From the point of view of an executing broker, there are four main
types of clients or market agents:

1.

4.

institutional investors, such as pension funds and asset man-
agement firms;

. quant funds, including market makers that seek to capture the

bid-ask spread or exchange rebates;

. retail investors, driven primarily by private liquidity demand

and less by proprietary signals;

hedgers of equity exposures, such as derivatives desks.

By using the execution services of an agency broker, all these agents
realise economies of scale in

e maintaining the connectivity required in a fragmented mar-

ketplace,

e guaranteeing regulatory compliance,

e providing pre-trade advice and post-trade reporting, and

e investing in research, development and customisation of trad-

ing algorithms.

EVOLUTION OF TRADING ALGORITHMS

Every algorithm is designed to achieve optimal order execution
within its feasibility space. This general statement becomes more
informative once we define the control parameters and the opti-
mality criteria. An agency trading algorithm does not have discre-
tion over the asset, the trade direction (buy or sell), the quantity or
the arrival time. These decisions are taken by the client/user. The
algorithm affects the trading process in two dimensions: time and

space.

e Inthetime dimension, the algorithm controls the speed of trad-

ing. In practice, this is achieved by slicing a client order into
smaller pieces and by using a limit order model to control the
aggressiveness of liquidity taking (the limit price of each slice).

In the space dimension, the algorithm controls the allocation
of each slice across several trading venues. The venues could
be public exchanges with visible order books, or dark pools
that match buyers and sellers at a reference price, typically the
prevailing mid-quote.
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Most trading systems handle the above two sets of decisions in sep-
arate components, the time dimension in the algorithmic engine and
the space dimension in the smart order router.

The variability in the behaviour and even in the names used to
identify algorithms comes from the plethora of trading objectives.
Typically, an objective is defined by the corresponding benchmark
that is to be met or exceeded. Common benchmarks are

o the fill rate, ie, proportion of the order that was actually filled,

e the fill composition, ie, proportion of transactions that were
passive (filled on the bid/ask side for a buy/sell order),
aggressive (crossed the spread) or dark (matched in a dark
pool),

 performance or slippage versus a reference price, such as ar-
rival price, interval volume-weighted average price (VWAP),
participation-weighted price (PWP) or end-of-day closing
price,

e adherence to a fixed trading speed, measured as a percentage
of market volume (POV),

e compliance with preset instructions on how to speed up or
slow down, based on momentum or reversion in the price path,

¢ the amount of price reversion against the order after the end
of trading.

All of the above benchmarks are measurable quantities that are
reported in a post-trade Transaction Cost Analysis (TCA). Clearly,
the benchmarks are not all orthogonal or even mutually consistent.
Cost-sensitive clients tend to care more about slippage, whereas
information-sensitive clients mindful of HFT agents emphasise fill
composition and price reversion. It is the task of execution consul-
tants to understand the relative weights that a client assigns to the
above objectives and advise on the choice of an execution algorithm
and its parameters.

Algorithm generations

First generation algorithms

First generation algorithms originated in program trading desks and
their objectives were rather mechanical. The most common ones are
the following.
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¢ CLOCK: trade at fixed rate with respect to chronological time
(wall clock); at HFT timescales an order almost never gets filled
uniformly, so CLOCK and similar strategies measure the speed
of trading within a time aggregation interval At, typically of
the order of minutes.

e POV: trade at a fixed participation rate v, with 0 < v < 1;
within the time aggregation interval At, the order should
execute v shares for every share traded in the market.

e VWAP: complete the order within time interval T, such that the
average execution price is equal to the market VWAP within T.

Assuming that the quantity of a fully filled client order is X asset
units (shares in the case of equities), then

X =oT 2.1)

This would be the case if the market traded uniformly in chronolog-
ical time, or if we use the market’s volume time as the clock. Either
the order duration T (VWAP) or the speed of trading v (POV) needs
to be specified. With variable market speed of trading we need to
discretise the time interval [0, T] over n steps At;, and Equation 2.1
becomes .

X = > vilt; (2.2)

i=1

Therefore, executing a CLOCK or VWAP or POV strategy is a
scheduling problem, ie, we are trying to enforce Equation 2.2 within
each evaluation interval At; while targeting a predetermined T or a
variable v;. Controlling the speed of trading v; is a non-trivial practi-
cal problem that requires statistical models for forecasting the market
volume over short horizons, as well as local adjustments for tracking
the target schedule (Markov et al 2011). These scheduling techniques
are also used in later generation algorithms.

Second generation algorithms

Second generation algorithms introduce the concepts of price impact
and risk. The classic case is implementation shortfall (IS) (Per-
old 1988). Using the arrival price as the benchmark, high-urgency
trading affects the price by moving it away from the order’s side
(increases the price when we buy and decreases it when we sell).
Low-urgency trading creates less impact on average, but exposes
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Figure 2.1 Impact-risk trade-off
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the execution to price volatility over a longer time interval. The
impact-risk trade-off is illustrated in Figure 2.1 with a stylised
one-versus-two-slices example.

Implementation shortfall led the field of optimal execution to
a renaissance. Similar to Markowitz’s classic portfolio theory, risk
needs to be weighted against impact via a risk aversion parame-
ter (Almgren and Chriss 2001). Unlike first generation algorithms, a
client’s risk preference affects the optimal trading schedule in IS.
Moreover, the optimal schedule is affected by how price impact
depends on the speed of trading, ie, it is cost-model dependent. An
IS algorithm with zero risk aversion is equivalent to a VWAP strat-
egy. The optimal balance between risk and impact traces an efficient
frontier in cost-risk space as we increase risk aversion. Increasing
risk aversion front-loads the schedule, achieving shorter, less risky
execution at a higher impact cost.

The IS concept of risk-aware trading trajectories can be gener-
alised in two ways. First, by reversing the time direction, we can
treat, in the same framework, strategies that target the market on
close (MOC) price. A risk averse client will decide to send the whole
order into the closing auction in order to meet the benchmark. A less
risk averse client may decide to allow the algorithm to pre-trade a
portion of the order ahead of the closing auction, if there is a view
on price trend (alpha) leading to the market close.

The second generalisation of IS is to apply the framework cross-
sectionally for a whole portfolio of orders. It is clear that bal-
ancing risk against impact and imposing exposure constraints at
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the portfolio level is a more efficient method than treating each
order individually. Portfolio IS algorithms rely on factor risk mod-
els for capturing intra-day return covariance and exposure, and on
optimisers for creating the constituent order waves.

To summarise, the main second generation algorithms are as
follows.

e IS: the classic, risk-aware extension of VWAP.

¢ Quantitative market-on-close (QMOC): this is IS with closing
price as benchmark, used for pre-trading towards the closing
auction.

e Portfolio IS (PTIS): this optimises risk versus impact cross-
sectionally as well as over time.

Third generation algorithms

Third generation algorithms recognise the fact that optimal execu-
tion is a stochastic control problem conditioned on the current state
and recent history of the limit order book. These algorithms are also
known as adaptive or event driven. They use high-frequency trading
signals to opportunistically deviate from theoretical optimal trajec-
tories. As a result, they are much more suitable for an HFT mar-
ketplace. Below we shall use the Bank of America Instinct suite of
algorithms as a representative example from this generation.

Adaptive algorithms consist of two main components:

1. an indicator function I(t, Oy, ..., Os_p; 0);

2. aresponse function R(I;, X;; ¢).

The indicator function depends on current and lagged market
observables Oy, ..., O;—, and on model specific parameters 6. Exam-
ples of parameters are the window size over which we compute a
moving average, a spread cut-off below which we consider the price
motion as normal diffusion or an order-book imbalance ratio cut-off.
The purpose of the indicator is to compute some dynamic aspect of
the market and return a short-term forecast. The response function
depends on the indicator I;, the current state of the order X; and strat-
egy or client parameters ¢. The purpose of the response function is
to generate a trading action. Possible trading actions are:

e to increase/decrease the quantity of a child order;

e to update the limit price;
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e to cross the spread;
e to cancel the child order and await further updates;

e to reallocate the posted quantities among trading venues.

These trading actions are the tactical decisions that affect the realised
speed of trading v, discussed earlier. We call the combination
of one indicator (or possibly several indicators) and a response
function a “trading signal”. Indicators and responses are typically
implemented in separate components of a large trading system, in
order to decouple indicator calculation and publishing from order
management.

Indicator zoology
The indicators used in adaptive algorithms are the high-frequency
analogues of the more popular technical indicators used for day
trading. This does not mean that we can simply take a standard
technical indicator, recompute it at high frequency and use it for
electronic trading. Statistical relationships observed or believed to
be valid for daily time series may simply be noise at millisecond
timescales.

High-frequency indicators can be classified based on the stat-
istical dependence that they aim to capture. The following is a
non-exhaustive list of common indicator types.

e Trade autocorrelation: trade signs are correlated within short
timescales due to algorithmic slicing of large client orders; this
could lead to predictable trade direction.

e Order imbalance: the limit order book may be too heavy on
one side; this could lead to predictable price movement over
the next time period.

e Momentum/reversion: the price path exhibits a strong trend;
momentum traders bet on the trend persisting and reversion
traders bet on its reversal.

¢ Relative value: the traded asset is cointegrated with a sector
index or another asset; this leads to predictability in the rever-
sal of the spread between the traded and the reference asset
(pairs trading).

¢ Volume clustering: a recent spike in trading volume may be a
leading indicator of more volume spikes in the short term.
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¢ Unexpected news: the market responds strongly to unsched-
uled news about a company or product; this may lead to a
predictable increase in trading volume or even a predictable
price trend.

¢ Informed trading: the presence of agents with private informa-
tion may be inferred from the order flow using the probabil-
ity of informed trading indicators PIN and VPIN as in Easley
et al (2011);* venue toxicity can affect the trading decisions of
uninformed agents.

¢ Venue liquidity: high activity in a certain trading venue (lit or
dark) may be used to adjust the probability of getting filled
across venues and reallocate quantities at the smart order
router level.

All of the above can be formulated as indicator functions
I(tr Otr ey Ot*h; 0)

The main effort in trading signal research is to properly calibrate
the auxiliary parameters 6 and identify the market regimes during
which an indicator has predictive power. Techniques from machine
learning are commonly used for these tasks. Once an indicator is
proven useful, historical or simulation-based testing is used to adjust
the response function and tune the trading engine.

It should be noted that adaptive algorithms operate on top of a
baseline trading trajectory. They act as point-in-time modifiers of
a default behaviour. Adaptive algorithms can easily accommodate
multiple objectives. For example, they can be used as impact min-
imisers, but when excessive HFT activity is detected they can update
minimum crossing quantities and limit prices quickly, to protect the
order from being gamed or otherwise exploited. Specific examples
of constructing and using HFT signals are given later, after a brief
discussion of the effect of adaptive algorithms on transaction cost.

ALGORITHMS AND TRANSACTION COST

In this section we discuss transaction cost at the client order level.
Although this is not a high-frequency view of the trading process,
we want to understand the general properties of price impact and
also provide evidence that high-frequency signals reduce the total
transaction cost.
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Figure 2.2 Average arrival slippage by participation rate
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Fully filled client orders of at least 1,000 shares and duration of at least one minute
were used. The continuous line and the uncertainty bands around it come from
local regression.

Modelling transaction cost is an active topic of theoretical and
empirical research. Every trading system implementing second and
third generation algorithms needs pre-trade expectations for the cost
of a client order. Most models use common explanatory variables
such as the size of the order relative to the average or median daily
volume, the average participation rate during the execution inter-
val and asset-specific attributes, such as spread and volatility. Price
impact is either modelled using parametric functional forms involv-
ing power laws and decay kernels (Gatheral 2010; Obizhaeva and
Wang 2013) or estimated non-parametrically for various buckets of
order size and participation rate. We shall not discuss in detail the
structure of these models here. Instead, we shall look at the realised
cost of large order samples and break it down by the algorithm used
for their execution.

We shall use the arrival price as the common benchmark across
all algorithms. The side adjusted arrival slippage is defined as

P, — Py
C=p2—- 2.3
p, (2.3)
with P, the execution price, Py the arrival price and n the order sign

(+1 for BUY, —1 for SELL). Positive values for C denote loss relative
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Figure 2.3 Average arrival slippage by trading strategy
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The continuous lines come from local regression.

to arrival. Typical parametric models for the arrival slippage are of
the form

C=cs+boVTo* + ¢ (2.4)

The explanatory variables are the asset bid—-ask spread s and volatil-
ity 0, and the order duration T and participation rate v. The errors
€ are assumed to be independent. The dimensionless coefficients
¢, b and the exponent « are statistically estimated by fitting large
samples of historical executions.

Figure 2.2 shows the average arrival slippage as a function of
participation rate. The sample used consists of client orders exe-
cuted algorithmically by Bank of America Merrill Lynch throughout
2012. The standard error is computed by assuming normal residuals
around the mean value for each participation rate bin. Each point in
the graphis anaverage over all equities and order durations. There is
strong evidence that the cost increases sublinearly with participation
rate. The exponent « is estimated at 0. 6.
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In Figure 2.3 the average arrival slippage is plotted as a function
of participation rate and broken down by trading algorithm. It is
easy to see that for participation rates above 10% the instinct adap-
tive algorithm starts outperforming earlier generation algorithms.
This comparison may be penalising the VWAP algorithm since its
benchmark is not the arrival price but the interval VWAP. Never-
theless, it is clear that the signal-driven, adaptive strategy is more
cost effective at least for medium to high trading urgency. This is
the business case for execution brokers to invest in high-frequency
signals development.

CONSTRUCTION OF TRADING SIGNALS

In this section we provide concrete examples of high-frequency sig-
nals that can be used in algorithmic order execution. As was stated
earlier, the indicator function I(t, O, ..., Os_p; 0) takes as input a
recent history of the market observables Oy, ..., O;—. The first step
in signal development is the choice of the time window or lag, h, and
the weights to be used for summarising this history.

Timescales and weights

A simple approximation of the limit order book is a single-server
queuing system. Trades arrive into the queue at random times and
with average size Q.. The top of the book contains bid and ask quotes
of average size Qp and Q,. We define the queue time T4 as

Tqi= Qbé’x Qa

The queue time is the number of trades it takes on average to deplete
or recycle the top of the book, independently of trade direction. It is

(2.5)

a time interval consisting of T4 ticks in the stochastic “trade clock”.

The queue time is a stock-specific attribute. Long queue stocks
have thick limit order books relative to their typical trade size. For
these stocks, spread crossing is expensive (the price tick is large), so
limit orders pile up at the top of the limit order book. In chronological
time the price paths of long queue stocks are stepwise constant. Short
queue stocks, on the other hand, have thin, fast updating limit order
books, and their price paths have a lot of noisy fluctuations.
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Given a stock-specific queue time T4, we can define the indicator
time window Ty by simply translating Tq from trade to chronologi-
cal time. Call Tqay the duration of the trading day and N4 the aver-
age number of trades per day. The quantity Nid/Tday is the average
market speed of trading. The time window Ty is then defined as

(2.6)

The dimensionless zooming factor z = @ (1) allows for fine tuning of
the definition. The interpretation of Ty is clear. It is the chronological
time interval to wait for T trades to occur on average.

The distribution of the window size Ty is shown in Figure 2.4 for
members of the S&P 500 and Russell 3000 indexes. We note the sharp
peak of the distribution between 20 and 40 seconds for the S&P 500
and between 0 and 120 seconds for the Russell 3000.

After choosing the time window Ty as above, we summarise
the observables O; by computing an exponential moving average
(EMA). An EMA is preferred over a rolling window average because
itis computationally more efficient. The standard update formula of
the EMA M; of a quantity Oy is

M; =wM;_ 1+ (1 - ZU)Ot (27)

The weight w, 0 < w < 1, is called the smoothing factor. In the limit
w — 1 the EMA strongly discounts the present observation O; and
the average is smooth. Conversely, in the limit w — 0 the EMA tracks
the present observation closely and fluctuates with it.

The weight can be dynamic, ie, a function of the observation time
t. Assume that, as of f, the time of the last trade is t;_1. We define
the weight w(t) as the exponentially decayed distance between ¢
and t;_1, measured in units of Ty. For observation time equal to the
current trade time, t = f;, the weight becomes

w; = e*(fi*fifl)/'rw (28)

The interpretation of w; is easy to see in the limit of large queue
times Tq > 1. Using the definition Tw = Tday/Nud, and assum-
ing that trades arrive uniformly at constant speed, At; = Nyvd/Tday,
Equation 2.8 becomes

1-wi=1-e Y L (2.9)
Tq
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Figure 2.4 Distribution of the timescale T, for stocks in (a) the
S&P 500 and (b) the Russell 3000
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For each stock Ty is averaged over all trading days in January 2013. The width of
each bin is 10 seconds for S&P 500 and 60 seconds for the Russell 3000.

In this limit the moving average is determined by the values of the
observable O; over the last Tq trades. In summary, we have defined
a stock-specific time window Ty and a dynamic weighting scheme
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w; for computing indicators as exponential moving averages. The
next step is to choose the specific observable Oy.

Trade sign autocorrelation

The time series of trades exhibits strong autocorrelation. This can
be easily demonstrated by assigning signs to every trade and com-
puting the autocorrelation function (ACF). There are several trade
sign algorithms. Here we use one of the simplest, the Lee—Ready
algorithm. A trade is assigned the sign +1 (—1), meaning that the
trade was buyer initiated (seller initiated) if the transaction price is
above (below) the mid-price. The ACF of trade signs is plotted in
Figure 2.5 for a high (Microsoft Corp symbol: MSFT) and a medium
(BEAM Inc symbol: BEAM) capitalisation stock. We note significant
correlation over several lags, in particular for the high capitalisation
stock.

The autocorrelation of trade signs is due primarily to algorithms
splitting large client orders (Téth et al 2011). The log-log plot in Fig-
ure 2.5 provides evidence of a power law decay of the correlation p
at lag h as p oc h™Y. We estimate the decay exponent y = 0.50 for
MSFT and y = 0.65 for BEAM.

The predictability of the trade signs means that an indicator that
measures trade arrival separately for buy and sell trades will be rel-
atively stable. Following Almgren (2006), we generalise the trade
sign from the discrete variable with +1 values to two continuous
variables, the “askness” a and the “bidness” b, both within the [0, 1]
range. For each trade, the variable a (b) is the distance of the trans-
action price from the bid (ask) measured in units of spread. Call P,
the transaction price, and Py, P, the bid and ask prices prevailing at
the time of the trade, respectively. Then

=min((poge) 1) vemin((Ro) 1)
a—mm((Pa_Pb L1, b = min P, — Py ,1 (2.10)

We use the notation x* for the positive part of x. The variables a
and b are by construction floored at 0, capped at 1 and satisfy the
constraint

a+b=1 (2.11)

Atrade with a close to 1 executes near the ask, so it is buyer initiated.
Likewise, a trade with b close to 1 executes near the bid, so it is seller
initiated.
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Figure 2.5 Log—log autocorrelation of trade signs for (a) MSFT and
(b) BEAM
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Using the timescales and weights of the previous section, we
define the EMAs for a and b as

1
Ai = iai + w,-Ai_l, B; = 7191' + w;Bi—1 (2.12)

Tw Tw
The quantities A; and B; represent the local speeds at which trades
arrive at the ask (bid) side of the limit order book. Finally, we nor-
malise the EMAs by dividing by half of the average trading speed
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as
- 2T, - 2T
Aj= 04 B= g (2.13)
trd Nird
If the order flow is balanced between buys and sells within the win-
dow Ty, then A; = B; =~ 1. About half of the trades are buyer initiated

and half are seller initiated.

An algorithm that is executing a BUY order at some target partic-
ipation rate (say POV), may exploit the indicator B, which measures
the local speed of seller initiated trades. If the level of B; is signifi-
cantly higher than 1, the algorithm increases the participation rate
in order to expose more of the order quantity to sellers. This is an
example of a response function R(B;, X;, ¢), which takes as input
the indicator By, the order state variable X; and the parameter ¢ that
controls the rate of increase of the participation rate given the devi-
ation of the indicator from the baseline value of 1. When the indi-
cator reverts, the participation rate decreases accordingly. Similar
treatment can be applied to SELL orders with the A indicator.

Figure 2.6 shows the time evolution of an order traded by an
adaptive algorithm using the above signal. The order outperformed
the arrival mid-quote price by 2.1 basis points, which is about one
full bid—ask spread.

Order-book imbalance

Order-book imbalance as a predictor of price movement has been
extensively studied in the literature (Cont and De Larrard 2011). The
basic idea is that if the bid side is much heavier than the ask side,
over a short time horizon the price will most likely move up because
of the buy pressure. Several analytical results for the probability of
price movement have been derived for the case of limit order books
with Markovian dynamics (Avellaneda and Stoikov 2008; Cont et al
2010).

To construct a trading signal, we need an imbalance indicator
and an associated response function. “Microprice” is a common
imbalance indicator. It is defined as

Qa Qb
Piero = P00+ Q0 Q0+
The bid and ask prices Pp and P, are weighted in proportion to the
quantities on the opposite side, Qa and Qp, respectively. Therefore
Pricro is closer to the bid level if the ask side is heavier, and becomes
the mid-quote price for a balanced limit order book (Figure 2.7).

(2.14)
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Figure 2.6 Order to sell 15,000 shares of BEAM, or 1.8% of ADV as of
a day in February 2013
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The execution duration was 16.1 minutes. Note the solid line in the second panel.
This is the participation rate modulated by the signal. The third panel shows the
actual fills. Grey bars are fills from lit venues and black bars are fills from dark
venues.

Next comes the question of the timescale t,,, to be used for smooth-
ing the indicator. The answer to this depends on whether Pmicro
will be used at the order scheduling layer, or as part of the limit
order model, where decisions about spread crossing, cancellations
and amendments are taken at high frequency. In the second case it
is not necessary to average Pmicro OVer its recent history. We simply
read it off at each evaluation time and take an action. The response
function R(Pmicrot, Xt, ¢) for a BUY order can be of the form

cross spread  if Pmicro > Pa — ¢ (Pa — Pp)
Rpyy = . (2.15)
stay posted  if Pmicro < Pa — ¢(Pa — Pp)
Likewise, for a SELL order
cross spread  if Pmicro < Pp + ¢p(Pa — P
Repir = 1% . micro b + ¢ (Pa b) 2.16)
stay posted  if Pmicro = Pp + ¢ (Pa — Pp)
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Figure 2.7 The microprice level for various top-of-book configurations
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The parameter ¢ defines the distance in spread units within which
Pricro needs to be from the opposite side for spread crossing to be
triggered (Figure 2.8).

Asin the case of the autocorrelation signal, the parameter ¢ needs
to be carefully calibrated using historical and randomised testing.
Moreover, latency effects need to be under control because they affect
the performance of Microprice as well as any other HFT signal; see
Stoikov and Waeber (2012) for a discussion.

FAIR VALUE AND ORDER PROTECTION

Executing orders in a high-frequency multi-venue environment cre-
ates opportunities for the faster agents. Low latency is an advantage
for HFT traders and a revenue generator for exchanges that provide
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collocation services. To avoid explicit and implicit costs, brokers try
to internalise order matching by inviting their clients to participate
in dark liquidity pools. The proliferation of dark pools provides evi-
dence for their cost benefits. There are no spread crossing or add/
take fees, orders are matched at the prevailing mid-quote price and
transactions occur without participating in the public price forma-
tion process. But the benefits of dark trading are limited, because
dark pools cannot satisfy the liquidity demands of their clients con-
sistently all the time. Consequently, agents end up participating in
both dark and lit venues. The potential information leakage requires
brokers to have mechanisms for protecting orders.

The two main threats from HFT trading are dark order detection
(pinging) and sudden price movements (gaming). The first is typi-
cally intercepted by detecting the pattern of small orders that try to
probe a resting order in a dark pool. Upon detection of the pinging
pattern, the minimum crossing quantity is adjusted to block further
attempts to infer the size of the resting order.

Sudden price movements in the lit markets and for thinly traded
stocks could be suspicious. According to the standard gaming sce-
nario, an HFT agent may have detected the size and direction
(BUY/SELL) of an order resting in a dark pool or en route to an
exchange. The fast agent moves the price away from the detected
order (eg, buys ahead if the order wants to buy) with the inten-
tion to trade with the detected order at this new reference price (eg,
sell against the buying order at an elevated mid-quote price). Such
threats, real or perceived, can be mitigated by a high-frequency sig-
nal that continuously computes a reference or fair price and sets
limits with respect to this price.

The “fair value” indicator is a form of VWAP over the look-back
window Ty (Equation 2.6). It is defined as the ratio of the expo-
nentially weighted turnover divided by the exponentially weighted
traded volume within Tyw. At each trade arrival time t; we observe
the transaction volume V; and price P;. The fair value numerator is
updated as

N; = wiN;_1 + (1 — wi)ViP,- (2.17)
and the denominator is updated as

D; = w;D;_1 + (1- wi)V,- (2.18)
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Figure 2.9 Fair value signal overlaid on top of a SELL order trading in
dark pools
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The tolerance is ¢ = 2. Note that fills 25-30 are not allowed by the signal.

The fair value indicator P; is then computed as
p =N
D;
By adjusting the zooming factor, z, we can shorten the window Ty,
and make the indicator track the latest transaction price more closely.
This is the same mechanism as in the autocorrelation signal.

The fair value response function R is parametrised by a tolerance,
¢, which determines within how many multiples of the bid—ask
spread s we allow the order to trade. The response function defines
the limit price as

(2.19)

R = Pi + U¢S (2.20)

with n the order sign (+1 for BUY and —1 for SELL). Figure 2.9 shows
the signal in action, for a SELL order trading in the dark. The solid
black line is the limit price for tolerance ¢ = 2. Any fill below this
line is not allowed by the signal.

Order protection using the fair value signal has certain advan-
tages over a common alternative mechanism, the volatility bands.
In the volatility bands method, limit prices are set a multiple of o /T
away from arrival price, with o the mid-quote volatility and T the
time since order arrival. The idea here is that, according to Brown-
ian motion scaling, price fluctuations of order o+/T are diffusive
(normal), whereas bigger price changes are considered jumps. Both
mechanisms try to detect abnormal price jumps. The fair value signal
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is independent of order arrival, so it is robust under cancellations,
replacements and other order amendments.

CONCLUSION

In this chapter we reviewed the evolution of trading algorithms and
focused on the event-driven, adaptive generation, as this is more
suitable for an HFT ecosystem. We reviewed methods of construct-
ing trading signals and illustrated them with a few examples. Our
focus was on execution strategies for large orders of predetermined
size and buy/sell direction. The other large class of strategies not
discussed here contains the market-making and spread-capturing
algorithms of statistical arbitrage.

High-frequency trading has established a new normal mode in
the equity markets and it is spreading in other asset classes. It is
clear that executing orders in this environment requires fast infor-
mation processing and fast action. Fast information processing leads
to development and calibration of trading signals and adaptive algo-
rithms. Fast action requires investment in computer networking and
order routing technology. As experience is gained in this new envi-
ronment, and as economies of scale are realised, optimal order exe-
cution in an HFT world is becoming a utility with better understood
costs, benefits and trade-offs.

The opinions in the chapter are the author’s own and not nec-
essarily those of Bank of America Corporation or any of its
subsidiaries.

1 PIN denotes probability of informed trading; VPIN denotes volume-synchronised probability
of informed trading.
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Reducing trading costs and slippage is a universal concern of asset
managers. Although the decision of what assets to hold is still the
mostimportant aspect of investing, poor execution of trade decisions
can subtract many basis points from overall return. Conversely, hav-
ing an effective strategy to execute trades and to measure transaction
costs can enhance returns: “A penny saved in slippage is a penny
earned in alpha”.

Execution techniques in equities have advanced far ahead of those
in other markets, such as futures, options, foreign exchange and fixed
income. Reasons for this are the overall size of the equity markets and
the widespread use of active investment strategies. Another is the
simplicity of the products themselves: for trading a single name of
stock youneed very little information beyond its price. Relationships
between different stocks are at best weak. As a consequence, quant
researchers in equity markets have focused intensively on the details
of the execution process.

By contrast, fixed-income products are inherently complex, and
quantitatively minded researchers in this area have focused on such
aspects as yield curve modelling and day counts. Asset managers
have not traditionally focused on measuring or managing execution
costs, and have few effective tools to do so. However, the Securi-
ties Industry and Financial Markets Association (SIFMA) noted that
“It is clear that the duty to seek best execution imposed on an asset
manager is the same regardless of whether the manager is undertak-
ing equity or fixed-income transactions” (SIFMA Asset Management
Group 2008).
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This chapter discusses some details of the fixed-income markets
that present special challenges for best execution in general and auto-
mated trading in particular. The focus will be on interest rate markets
and in particular on interest rates futures markets, since those are
the most highly developed and the most amenable to quantitative
analysis.

Following a brief overview of the markets and the products that
we consider, the specific features on which we concentrate are the
following.

e Information events: interest rates markets are strongly af-
fected by events such as economic information releases and
government auctions. In contrast to earnings releases in the
equities markets, these events generally happen in the middle
of the trading day and we must have a strategy for trading
through them.

» Cointegration: interest rates products generally differ only in
their position on the yield curve. Thus, they move together to a
much greater degree than any collection of equities. To achieve
efficient execution in a single product, we must monitor some
subset of the entire universe of products.

¢ Pro rata matching: because futures products are commonly
traded on a single exchange (in contrast to the fragmentation in
the equities markets), the microstructural rules of trading can
be much more complex. One example is pro rata matching, in
which an incoming market order is matched against all resting
limit orders in proportion to their size. This is in contrast to the
more common time-priority matching algorithm. This change
in matching algorithm has dramatic effects on the dynamics
of the order book and optimal submission strategies.

FIXED INCOME PRODUCTS
The fixed-income universe is large and varied, from corporate bonds
to municipal debt, mortgage-backed products and sovereign debt
instruments, and includes various derived products such as swaps.
Some of these products are traded only by dealers, and for some of
them there is not even a central record of transactions.

We shall focus on the subset of fixed-income products that are
denoted “interest rate products”, that is, products for which default
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risk is negligible and market risk only comes from changes in the
underlying interest rate. Such products are usually, though not
always, sovereign debt of countries that have the ability to print
the currency in which their debts are denominated. However, the
short-term interest rate (STIR) products that we discuss below also
fall into this category, since they are defined in terms of specific rates
rather than issuers.

In particular, we shall focus on interest rate futures, since these
are centrally cleared, and traded on organised exchanges for which
detailed market information is easily available. Participants in all
aspects of fixed-income trading use interest rate futures to hedge
their rates exposure, letting them concentrate on the more idiosyn-
cratic aspects of their preferred products. Interest rate futures are
therefore a natural point of departure. As this field develops, we
hope to be able to extend execution analysis to a broader range of
fixed-income products.

Short-term interest rates

STIR products are instruments of very short duration. The largest
product in this category is the eurodollar future. Introduced by the
Chicago Mercantile Exchange (CME) in 1981, the eurodollar was the
first cash-settled futures product and is now one of the most heav-
ily traded futures contracts in the world. Each contract represents a
forward bet on the London Inter-Bank Offered Rate (Libor) as of the
date of expiration; the contract price is defined as 100 — Libor. The
deliverable amount is three months’ interest on a notional amount of
US$1 million; thus, each basis point (bp) change in Libor represents a
mark-to-market cash payment of US$25 per contract. The minimum
price increment for a CME eurodollar (except for certain short-dated
maturities) is 0.5bp, representing a cash value of US$12.50 (com-
pared with clearing and execution costs of US$1 or less), and the
bid-ask spread is almost always equal to this minimum value. Not
crossing the spread becomes one of the most important aspects of
trading them.

These products are thus “large-tick” in the sense of Dayri and
Rosenbaum (2012), meaning among other aspects that one-tick price
moves are often followed by reversals and special techniques are
necessary to estimate high-frequency volatility (Large 2011).

Eurodollar futures are traded with quarterly maturities out to
10 years (plus some thinly traded “monthly” contracts that we
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neglect), of which at least 10-15 are active. This is in contrast to
almost all other futures products, for which only the contract closest
to expiration, the “front month”, is active, except during the “roll”.
Eurodollar futures are thus inherently multidimensional.

Eurodollars trade using pro rata matching, which we discuss later
(see pp. 591f). The CME interest rates electronic markets are open
23 hours per day, with consequences that we discuss below (see
pp- 46ff).

Euribor futures and short sterling, both primarily traded on the
London International Financial Futures Exchange (LIFFE), are simi-
lar products, in which the underlying rate is respectively a European
interbank rate and a UK rate.

Treasury futures

The other large category of interest products is more traditional
futures contracts, in which the deliverable is a government debt secu-
rity. For example, the CME Treasury futures complex covers prod-
ucts with underlying maturities from two years to twenty-five years
and more. Their prices track very closely those of the underlying
products, and can thus to some extent be used as proxies. These con-
tracts also are “large-tick” because of the exchange-specified mini-
mum price increments. They exhibit strong coupling between prod-
ucts, although for each, only one maturity is active at one time, except
around the roll. On the CME these products, like eurodollars, trade
electronically 23 hours per day.

In Europe, the analogous products are the Euro-Bund and related
contracts (Bobl, Schatz and Buxl), traded on Eurex, which represent
European government bonds of varying durations. The UK ana-
logue is the long gilt contract (short and medium gilt contracts are
very thinly traded).

INFORMATION EVENTS

Interest rate markets are strongly affected by information releases
and economic events that happen during the day, such as US Trea-
sury auctions, announcements by the US Federal Open Market
Committee (FOMC), and releases, such as the Change in Non-farm
Payrolls number from the US Bureau of Labor Statistics (BLS) on the
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Figure 3.1 The 10-year US Treasury futures contract trading through
the Change in Non-farm Payrolls information release at 08h30 New York
time on Friday, December 7, 2012
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The vertical axis shows the price in dollars and 32nds; the minimum price increment
for this contract is half of a 32nd. The pale grey region is bid—ask spread; black
dots are trades, and shaded regions show book depth. Before the event, liquidity
thins out and prices move a little. When the number is released, the price jumps
and activity resumes.

first Friday of every month. These events are the analogues of earn-
ings announcements for equities but, whereas earnings announce-
ments are usually scheduled outside of trading hours, these events
generally happen during the trading day.

Trading through information events has been specific to rates
markets (and energy and foreign exchange to a lesser extent) but
may be coming to other markets as round-the-clock electronic trad-
ing becomes more established. When the ICE exchange extended
its hours for electronic trading of grain futures in July 2012, CME
was obliged to do the same, and traders complained that “Trading
now will be open during the release of most of the USDA’s supply
and demand reports, which will increase volatility and decrease the
ability of traders to make informed decisions” (Dreibus and Wilson
2012).

Figure 3.1 shows an example of market reaction to an informa-
tion event: the 10-year front-month (March 2013) Treasury futures
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Figure 3.2 The 10-year US Treasury futures contract trading through a
30-year bond auction, scheduled at 13h00 New York time on Thursday,
December 13, 2012
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The price jump happens about 95 seconds later than the auction time.

contract trading through the Change in Non-farm Payrolls informa-
tion event on December 7, 2012. (This event is one component of
the Employment Situation cluster of simultaneous releases by the
BLS, but it is by far the most important and most people know the
cluster by this name.) This event is the most significant of all infor-
mation releases, since it is the best single indicator of the health of
the economy and the likely future direction of interest rates.

It is clear that this event cannot be neglected in the design of an
effective trading algorithm. For any “significant” information event,
the algorithm must take defensive actions before the event happens,
such as removing limit orders from the book and aligning itself with
the forecast schedule if the desired order type is based on a schedule.
Also, all such events must be included into forecast curves for intra-
day volume and volatility.

Figure 3.2 shows another example: the 10-year Treasury futures
contract trading through a 30-year bond auction on December 13.
The scheduled time of the auction is 13h00 New York time, but that
denotes the time at which the Treasury stops accepting bids. The
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Table 3.1 Events on Thursday, December 13, 2012, from Bloomberg
database

NY time Region Event

06.00 UK CBI trends total orders

06.00 UK CBI trends selling prices
08.30 us Jobless claims

08.30 us PPI

08.30 us Retail sales “control group”
09.45 us Bloomberg consumer comfort
10.00 us Business inventories

13.00 us 30-year bond auction

Not all events are significant.

market response comes approximately one and a half minutes later,
when the auction results are released.

The auction is not the only event on that day: Table 3.1 shows
eight events that occur on Thursday, December 13, 2012, including
the 30-year bond auction. We generally look at only US, UK, EC
and German events, although on this date only US and UK events
occurred. If all of Western Europe and Canada are included, then
there are 32 events on this day.

In order to trade through and around these events, we need to
obtain quantitative answers to several questions.

e Which events are “significant”? That is, for which events
should we take potentially costly action such as withdraw-
ing orders from the book. The event database on Bloomberg
shows 482 distinct events within 2012, including those in the
US, Canada and Western Europe, and including government
auctions and information releases. Only a small fraction of
these are significant.

e When do events happen? Is the time as given by Bloomberg
an accurate indication of the actual time as reflected in price
action? For example, for an auction, not only is the market
response a minute or two after the scheduled time, but also the
uncertainty in this time is several seconds. It would be embar-
rassing to pull limit orders from the book several minutes
before or after the actual price move.

e Do US events affect European products and vice versa?
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Figure 3.3 “Event microscope” applied to the Treasury auction shown
in Figure 3.2
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The difference of moving averages identifies a price move of —8 “ticks” (minimum
price increment) at a time that is 95 seconds after the event time.

Event microscope

At Quantitative Brokers, we have designed an “event microscope”
to look in detail at price jumps around events. A more detailed
description is given by Almgren (2012), but we give a brief sum-
mary as follows: we compute exponential moving averages of the
midpoint price time series, both from the left (backward-looking)
and from the right (forward-looking), with a variety of different time
constants. The difference between the left-moving average and the
right-moving average has a peak at the time of the event: the loca-
tion and magnitude of this peak let us locate precisely the timing
and significance of the event response.

Table 3.2 shows results for significant events for the US 10-year
Treasury futures (ZN) and its European equivalent, the Euro-Bund
(FGBL), for calendar year 2012. To generate these results, we do
the analysis shown in Figure 3.3 for each instance of each differ-
ent event type as given by Bloomberg (column 7. is the number of
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Table 3.2 Event effects on US 10-year Treasury futures (ZN), and its
European equivalent, the Euro-Bund (FGBL), for January—December
2012

Event name Region n. n |Ap| At Rng At

ZN (US 10-year)
Change in Non-farm us 12 12 155 0.2 0.4

Payrolls
FOMC rate decision us 8 8 65 508 98.1
Construction and us 12 8 5.2 0.5 0.4
manufacturing
10-year notes us 12 10 5.0 98.1 3.5
30-year bonds us 12 9 46 990 3.0
ADP employment us 12 8 4.6 0.0 0.1
change
5-year notes us 12 6 41 98.0 7.3

FGBL (Euro-Bund)
Change in Non-farm us 11 11 18.2 0.3 0.6

Payrolls

ADP employment us 12 11 51 -0.0 0.1
change

PMI manufacturing GE 24 14 5.0 —-119.5 1.1

Consumer confidence us 12 11 4.3 1.7 60.9
Consumer confidence DE 12 7 41 -1184 181.7
indicator

ne is the number of times the event occurred, eg, 12 for a monthly event.
n is the number of instances that were significant for that product. |Ap|
is the median absolute price change, measured in units of the minimum
price increment; this value must be at least four to be significant. At is the
median time of the event, as an offset in seconds relative to the scheduled
time. Rng At denotes the Q1-Q3 interquartile range of the time offset. GE,
Germany; DE, Denmark; US, United States.

instances). We identify significant instances for which we detect a
jump of at least twice the minimum price increment (two “ticks”),
since an ordinary price change will appear as a step of one tick times
the minimum price increment. We then calculate the median abso-
lute price change across all instances, and define “significant” events
to be those for which the median price change is at least four ticks.

Among significant instances, we calculate the median time offset
in seconds relative to the scheduled time from Bloomberg (column
At). We also measure the uncertainty in this time by reporting the
interquartile range of jump times (rng At).
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Table 3.3 Event effects on long-term rates futures: US 30-year Treasury
futures (ZB), the CME Ultra contract (UB) and the Euro-Buxl (FGBX),
for January—December 2012

Event name Region n. n |Ap| At RngAt
ZB (US Bond)
Change in Non-Farm Payrolls  US 12 12 17.3 0.3 0.5
FOMC rate decision us 8 7 79 749 1443
30-year bonds us 12 11 5.9 99.0 3.2
Construction and Uus 12 8 59 05 0.9
manufacturing
ADP employment change us 12 8 57 00 0.1
10-year notes us 12 10 4.4 99.0 5.3

UB (US long-term)
Change in Non-Farm Payrolls  US 12 12 25,6 0.5 0.6

FOMC rate decision us 8 8 10.3 514 1324
30-year bonds us 12 12 9.9 99.0 5.0
10-year notes us 12 11 7.0 994 7.0
ADP employment change us 12 11 46 01 7.4
Goods Uus 12 12 44 0.9 5.0
Construction and us 12 11 43 0.5 0.7
manufacturing
Retail sales “control group” us 12 12 42 0.7 25
Consumer confidence us 12 9 41 0.0 0.1

FGBX (Euro-Buxl)
Change in Non-Farm Payrolls  US 11 11 133 0.7 1.0

FOMC rate decision us 8 7 6.8 898 183.2

30-year bonds us 12 11 58 96.6 70.0

ADP employment change us 12 8 43 01 9.7

Construction and us 11 10 42 21 1120
manufacturing

Leading indicators Uus 12 9 42 05 1334

Minutes of FOMC meeting us 8 7 441 83 626

Column headings are as described in Table 3.2.

We reach the following conclusions about event effects for interest
rates futures.

¢ Change in Non-farm Payrolls is in a class by itself in terms of
significance. It consistently causes price jumps of more than
10 ticks. The time is always quite close to the scheduled time,
within a fraction of a second.
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e FOMC rate decision is highly significant, at least for US
rates products. The time offset is a minute or more, and the
uncertainty in time is several minutes.

e Treasury auctions are significant for US products. The time off-
set is generally 95-100 seconds, with an uncertainty of several
seconds.

e A miscellaneous collection of other information events are sig-
nificant for US and European products. These events generally
happen near the scheduled time, though occasionally events
are released with specific offsets. For example, the Purchas-
ing Managers Index (PMI) from Markit, for which the German
Manufacturing information release is shown in Table 3.2, is
released on Reuters two minutes earlier than the “standard”
release, and it is this pre-release that moves the market. Sim-
ilarly, the Chicago Purchasing Managers’ report (not shown)
from the Institute for Supply Management is released to sub-
scribers three minutes before the public release, and this offset
is clearly visible in the data.

e Non-US events are almost never significant for US rates prod-
ucts. For European products, US events are the mostimportant,
and only a few European events rise to significance (the exact
combination depends on the time period and contract). This
is consistent with results found by Andersson et al (2009) and
Cailloux (2007).

COINTEGRATION

Cointegration is a widely studied and sought-after property of finan-
cial time series; see Alexander (2001) for a broad and detailed discus-
sion. Although strong relationships between different price series
are rare in, for example, prices of different stocks, they are abso-
lutely ubiquitous in interest rate products, since the only differences
between different products concern the duration of the product and
possibly the national origin. An understanding of these interrelation-
ships is essential to obtaining effective execution. An order for even
a single asset must be understood within a highly multidimensional
market context.

Figure 3.4 shows an example of intra-day price motion. The con-
tracts shown are the four primary Treasury futures contracts traded
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Figure 3.4 From bottom to top, the CME 5-year Treasury (ZF), 10-year
(ZN), 30-year (ZB) and Ultra (UB) futures, expiring in March 2013 (H3),
from midnight to market close at 16h00 Chicago time, on December 11,
2012
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CST on Tuesday December 11, 2012

Price scale is arbitrary, to show relationships. The grey bands are bid—ask spread;
the lines are bid—ask midpoints. These contracts move very closely together; trad-
ing in ignorance of the relationships between them would give poor performance.
A, GE Wholesale Price Index; B, GE ZEW survey; C, UK 1.75% 2022 bonds; D, US
NFIB small business optimism; E, US trade balance; F, US wholesale inventories;

G, US four-week bills; H, US three-year notes; |, CME close.

on CME (the two-year contract is not shown). Since these contracts
represent US interest rates at different durations ranging from five
years to thirty years, they move very closely together. A cointegration
model can help us identify short-term mispricings. Thatis, these con-
tracts establish a relationship with each other. When that relationship
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Figure 3.5 Two of the four contracts in Figure 3.4 plotted against each
other: the 10-year (ZNH3, horizontal axis) and 30-year Treasury futures
(ZBHS, vertical axis)
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Each dot represents a one-minute sample point. Since the prices move on a grid,
a small amount of random noise has been added, so that larger point clusters
show larger numbers of data samples. The lines show the axes of a singular
value decomposition applied to the correlation matrix of the entire day’s data
(this forward-looking construction is used only for an example; in practice a rolling
volume-weighted average would be used).

is disturbed it is likely to re-establish itself, and that provides some
amount of short-term price predictivity.

The most flexible approach to understanding cointegration is
based on the principal components construction of Shintani (2001)
and Chigira (2008). In contrast to the traditional approach of
Johansen (1991), it does not require estimation of a discrete-time
vector autoregressive model; it is extremely flexible and robust for
real-time continuous market data. The construction is illustrated in
Figures 3.5-3.7.

In Figure 3.5 we have extracted two of the price series shown in
Figure 3.4, in order to display them against each other on the page.
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In reality, we would do the analysis on the full n-dimensional price
series. The relationship seen in Figure 3.5 is here reflected by the
alignment of the price dots along a diagonal axis. The axes show the
actual price values in US dollars and 32nds per contract. The axes
have been scaled independently to accommodate each contract, but
it can be seen that the 10-year contract ZNH3 moves approximately
10/32 through the course of the day (133-10 to 133-20), while the 30-
year contract ZBH3 moves approximately 28/32 (148-28 to 149-24).
Of course, the longer duration contract has higher volatility since
its price is much more sensitively affected by changes in underlying
yield (this sensitivity is the definition of “duration” for an inter-
est rate contract), and this difference in volatility must be properly
handled in the analysis.

The circle in the middle of Figure 3.5 denotes the simple mean of
all the data points. The two lines denote the first and second princi-
pal components of the correlation matrix of the points, taken about
this mean point. The principal components are computed using the
components normalised by their variance, and are orthogonal in
that scaled coordinate system. (In fact, with only two variables, each
scaled, the principal vectors are (1,1) and (1, —1).) Since the plot
axes are also approximately scaled by standard deviation, the axes
are nearly orthogonal in the plot.

In this simple example, we perform the analysis using the entire
day’s data. In practice this would be impossible to compute since
it looks forward in time. In a real production application, both the
mean and the correlation matrix would be computed as a rolling
exponential average. Inaddition, the averages would not assign each
minute equal weight, but would use some form of weighting by
trade volume.

Figure 3.6 shows the price data from Figure 3.5, projected along
the two principal components. The difference in the components is
clear. The projection along the primary component (black line) is
essentially a reflection of the overall market movements seen in Fig-
ure 3.4. In this two-dimensional example, it is merely the average of
the two prices, appropriately scaled. In contrast, the projection along
the secondary component — in this two-dimensional example, the
difference of scaled prices — appears to fluctuate around zero. That
is, deviations of this component away from zero predict a move back
towards zero, and this information is extremely useful for short-term
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Figure 3.6 Projection of the price series in Figure 3.5 onto the principal
axes of the correlation matrix
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The vertical scale is arbitrary but is identical for the two components. The grey
line is the projection onto the primary axis (solid line in Figure 3.5), reflecting the
overall market motion (cf. Figure 3.4) and is largely unpredictable. The black line
is the projection onto the secondary axis (dotted line in Figure 3.5), which shows
mean reversion and is useful for prediction. A, GE Wholesale Price Index; B, GE
ZEW survey; C, UK 1.75% 2022 bonds; D, US NFIB small business optimism;
E, US trade balance; F, US wholesale inventories; G, US four-week bills; H, US
three-year notes; I, CME close.

trading on timescales of minutes and hours. Of course, this simple
graph does not constitute a rigorous test for cointegration behaviour,
especially given the forward-looking construction, but it indicates
the nature of the price dynamics.

Figure 3.7 shows the two price series in real time (black lines),
along with the price predictor derived from the cointegration model
(grey line). This price predictor is obtained by setting the secondary
component to zero, in effect, projecting onto the solid line in Fig-
ure 3.5. That is, it identifies the historical relationship between the
two products on an intra-day timescale, and supposes that, when
they deviate from this relationship, future prices will evolve so
as to restore the relationship. A systematic test of the accuracy of
the cointegration prediction shows that it is far less than perfectly
accurate, but still effective enough to add value to real-time trading.

Figure 3.8 shows the principal components for the full set of four
price series shown in Figure 3.4. This corresponds to what would
be obtained by a traditional analysis of yield curve dynamics, but
here on an intra-day timescale. The first component represents the
overall market motion, while the other components represent shifts
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Figure 3.7 Short-term price predictor, using the projections shown in
Figures 3.5 and 3.6
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Black lines are the raw price series as in Figure 3.4. Grey lines are the forecast
assuming that the secondary component in Figure 3.6 is set to zero, which is
equivalent to projecting onto the solid line in Figure 3.5. This says that when the
two contracts are relatively over- or under-valued relative to each other and to
their historical relationship, that the contracts will return towards equilibrium. A,
GE Wholesale Price Index; B, GE ZEW survey; C, UK 1.75% 2022 bonds; D, US
NFIB small business optimism; E, US trade balance; F, US wholesale inventories;
G, US four-week bills; H, US three-year notes; |, CME close.

Figure 3.8 Principal components for the four price series (normalised
by volatilities) in Figure 3.4
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The legend shows contributions to variance. The first component, carrying 97% of
total variance, is a constant component corresponding to overall price shifts. The
second component, carrying nearly all of the remaining 3%, is roughly a tilt in the
yield curve. The third and fourth components are negligible. Note that not until the
fourth component can we distinguish the 30-year bond (ZB) from the Ultra contract
(UB).
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relative to equal changes. The cointegration forecast would project
all components after the first to zero.

A similar equilibrium model could have been derived by con-
sidering the underlying nature of the products traded, and analys-
ing their sensitivity to changes in interest rates. The advantage of
this formulation is that it is extremely straightforward, requiring no
fundamental understanding of the products.

One limitation of the cointegration formulation is that it is com-
pletely symmetric between products, and has no intrinsic way to
capture whether certain components drive others by moving earlier.
For example, it is a common belief that futures prices move more
quickly than the underlying cash instruments. There is also some
empirical evidence that interest rates futures of longer durations
lead futures of shorter duration. This distinction can be extracted by
careful analysis of the predictive power of the signal, which will be
higher for the lagging products than for the leaders.

In practice, the models used for price prediction would be more
sophisticated than this. The eurodollar complex is even more tightly
coupled than the Treasuries illustrated here, and modelling their
interrelationships is essential. It is debatable whether it is better to
build a single model encompassing both eurodollars and Treasuries,
or whether to model each asset class separately; the decision must be
based on a systematic analysis of the predictive power of the regres-
sion signal. Similarly, other markets, such as Euribor, short sterling
and the European Bund-Bobl-Schatz complex, may be modelled
independently or together. The choice of how to group the wide
range of different products is guided by a mixture of market insight
and quantitative analysis.

The overall situation is not quite as simple as we have made it
appear here, but cointegration is definitely a feature of interest rate
markets that cannot be ignored.

PRO RATA MATCHING

The term “matching algorithm” refers to the process by which an
exchange matches limit orders resting in the order book against
incoming market orders. Typically, the total quantity of limit bid
orders at the best bid price, say, is larger than the size of an incom-
ing market sell order, and therefore some allocation must be made
of the market order among the resting orders. The market order
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will be completely filled, but not all the limit orders will be. Some
prioritisation must be imposed among the limit orders.

The most obvious matching algorithm, and the one that is used
by the overwhelming majority of markets, is “time priority”. Rest-
ing orders are maintained in a list in the order in which they were
entered. The market order is matched against the earliest order;
when that is filled, the remaining quantity is matched against the
next earliest order, and so on. This algorithm is simple and efficient.
In such a market, the traders’ main concerns are to keep track of
their positions in the queue, in order to have estimates of when their
orders will be filled.

Interest rates futures markets, largely alone among all markets,
often use some variant of pro rata matching. In pro rata matching, the
incoming market order is allocated among the resting limit orders in
proportion to the size of the limit order, ignoring (in a first approx-
imation) the time sequence in which the orders were entered. That
is, a large limit order will receive a large allocation, even if smaller
orders were entered much earlier. Field and Large (2008) have sur-
veyed the use of pro rata matching in futures markets, identifying
its predominance in rates markets, and provide a simple model for
the oversizing that we discuss below.

Pro rata matching is typically used for short duration products,
most notably the CME eurodollar complex. The two-year Treasury
futures contract uses a mixed time/pro rata matching algorithm.
The Treasury calendar spread contracts use pro rata matching. On
LIFFE, the short-term Euribor and short sterling contracts use “time
pro rata”, in which the allocation is weighted by preceding volume
as well as by size of the individual order.

All these products have low volatility compared with the ex-
change-imposed minimum price increment, and as a consequence
the bid-ask spread is nearly always equal to its minimum allow-
able value. That is, as noted above, they are “large-tick” in the sense
of Dayri and Rosenbaum (2012). This means that being executed
on a limit order is much more valuable than crossing the spread
with a market order. Also, the bid and offer prices commonly stay
at constant values for substantial lengths of time.

Figure 3.9 shows an example. The March 2015 contract is the
third most heavily traded eurodollar contract on December 11, 2012
and substantial trade activity is visible (the two heaviest are March
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Figure 3.9 The March 2015 eurodollar on December 11, 2012
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Pale grey shaded region is bid—ask spread. Black dots are trades. Mid-grey and
dark-grey shaded regions are quote size on the bid and on the offer, respectively
(as well as some “implied” bid volume at the midpoint). The black jagged line is the
“microprice”, a midpoint weighted by bid and ask sizes. The bid and offer prices
move only rarely, although substantial trade activity occurs.

and June 2013, three and six months from expiration). This contract
represents the Libor rate more than two years in the future. We would
expect market beliefs about this quantity to change throughout the
day, at least by several multiples of the minimum price increment,
0.5bp. Nonetheless, the bid and ask prices do not move at all for
extended periods, for example, for a period of four hours between
10h00 and 14h00 Chicago time (though two very short flickers are
visible within this interval).

When the quote prices do not move, a time priority matching
algorithm would excessively weight early arrivals. If a market maker
were able to capture the head of the queue with one large order
on the bid, and another on the ask, then every subsequent market
participant would be obliged to trade with them. Pro rata matching
gives later entrants the possibility to execute.

In these markets, the dynamics of the order book is extremely
volatile. Since there is no penalty for losing queue position, there is
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no disincentive to cancel and resubmit limit orders. This can be seen
in Figure 3.9, in the substantial changes in quote volume on the bid
and on the ask. The LIFFE time pro rata algorithm is an attempt to
partially dampen these wild swings.

An additional consequence of pro rata matching is the “arms race”
to oversize orders (Field and Large 2008). Since allocation is deter-
mined by order size, and since incoming market order volume is
typically too small to satisfy the traders who are hoping for pas-
sive execution, limit order participants have incentives to post much
larger quantities than they actually wish to execute. Typically, in
these markets, the average volume on the bid and the ask is several
hundred times a typical trade size. In Figure 3.9, the quantity on
the inside quotes is in the range of 10,000-20,000 lots, whereas the
average market order size for this contract is around 20 lots.

The only limitation on oversizing is the risk that a large market
order will fill for much more quantity than was desired, but such
large orders are rare (Arora 2011). Balancing the risk of overfilling
if we do oversize against the certainty of underfilling if we do not
oversize is our central concern when trading in a pro rata market.

CONCLUSION

Traders in fixed-income and interest rates markets have just as
much need for effective execution and transaction cost management
as their counterparts in the equities markets, although the latter
markets have received vastly more quantitative attention. Several
features of interest rates futures markets in particular are substan-
tially different from these other markets, and must be taken proper
account of in order to achieve good execution results.
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This chapter provides an overview of the landscape and the basic
mechanics of the foreign exchange (FX) markets and their organised
exchanges. We explain algorithmic trading in the foreign exchange
and analyse trading frequencies of different types of market partici-
pants. We continue with an overview of the key insights of academic
literature of the impact of high-frequency (HF) traders in the foreign
exchange market and discuss actual market events where there have
been short-term price disruptions. We focus on the behaviour of the
high-frequency traders involved.

There is definite empirical evidence of the path dependency of the
price trajectory; a black swan event may be triggered at any time due
to microstructure effects that are not linked to fundamental factors.
Organised trading venues are exploring ways to prevent microstruc-
ture effects distorting price action, though without reaching a sat-
isfactory solution so far. This chapter proposes a new method to
achieve price stability. We suggest that the queuing system of limit
order books rewards market participants by offering competitive
two-way prices; model simulations presented here indicate that this
might well enhance market stability.

THE CURRENCY MARKET

This section describes the currency market from a high-frequency
trading (HFT) perspective. We give an overview of the overall
landscape of the market and the relationships between the major
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Figure 4.1 Structure of the venues in the currency market
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players. The dynamics is illustrated by discussing their technical
details. Then we review the trading algorithms that are used in the
industry and, based on Schmidt (2011) and Masry (2013), we assess
their impact on market microstructure.

Market venues

The currency market is a complex system of organised exchanges. At
the centre of the market there are two inter-dealer electronic broking
platforms: Electronic Broking Services (EBS) and Reuters. These plat-
forms, described in some detail below, act as a source of interbank
liquidity in the FX market and they are the place where large HFT
players trade. The requirement of a minimum ticket size of one mil-
lion units has created a business opportunity to build alternative
trading venues for retail and other market participants. Currenex,
for example, has built a multi-bank electronic communication net-
work (ECN) and there is a similar platform available by Hotspot.
These new ECNs provide their customers with more sophisticated
tools for market making, such as full anonymity (Bank for Inter-
national Settlements 2011), where the counterparty making a trade
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does not know who is taking the other side; this is not the case with
EBS and Reuters. Retail aggregators have reshaped the market by
providing small-scale traders with access to the foreign exchange
markets. The retail aggregators have become a significant force in
the overall foreign exchange market, making up approximately 10%
of spot volume. Finally, the largest currency futures market is oper-
ated by Chicago Mercantile Exchange Group, with a daily volume
of US$100 billion.

Figure 4.1 depicts how the different venues interact. We observe
that the structure is not hierarchical, as Futures Commission Mer-
chant (FCM) firms trade with large banks and possibly on EBS and
Reuters. It is also interesting to note that Figure 4.1 is dynamic,
and players may change their behaviour and reposition themselves
within the foreign exchange market. An example is EBS, which
has decided to decrease the minimal ticket size to 100,000 units for
selected major currency pairs in order to attract smaller-scale traders.

We now give some detail about some of the main venues from
Figure 4.1.

EBS

EBS is the main venue for all the USD, EUR, GBP, CHF and JPY
crosses. EBS provides two data feeds, one with time-sliced snap-
shots of the order book every 250 milliseconds! and a premium feed,
EBS Live, which sends snapshots every 100 milliseconds. The snap-
shots were concurrently changed from showing the top level and two
lower aggregated levels to showing ten levels of the limit order book.
The minimum tick size was one pip, but was reduced to one tenth of
a pip. That experiment proved to be unsuccessful; as of November
2012 the minimum tick size for most pairs reverted to one pip or half
a pip. As already mentioned, EBS has a minimum ticket size of one
million units and attracts large institutional traders. At the time of
writing, they do not allow traders to modify orders or to have the
last-look provision.? All quotes are pre-screened for credit, meaning
that quotes will only be received from a given counterparty if the
prime broker who actually clears the trade has the required credit
line with the other counterparty or their prime broker. Most of the
main pairs have a minimum quote lifetime (MQL) of 250 millisec-
onds, meaning that an order cannot be cancelled until 250 millisec-
onds have elapsed from the time it was added to the book. Ticks are
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not sent out on the data feed in a real-time manner, but are instead
time-sliced to show an aggregate of the traded size at the best traded
price over the interval. Filled quotes are reported immediately to
the involved parties, before the rest of the market. Finally, we note
that EBS has a multi-matching-engine architecture located in New
York, London and Tokyo, and all engines operate independently but
update one another when the order book is modified.

Reuters

Reuters is the main venue for all the crosses for Commonwealth
currencies and Scandinavian currencies. Their rules are very similar
to those at EBS summarised above. Reuters does not have multiple
engines, and operates a single engine in London.

Currenex and Hotspot

Currenex has a fast architecture, which allows for streaming of order-
based feeds and timely confirmations and executions. It does not
provide an MQL feature, and no minimum ticket size is imposed. At
Currenex, traders have the ability to modify orders instead of can-
celling and replacing them, and to use conditional orders, execution
algorithms and pegged orders. The tick size is 0.1 pips. Currenex
does have some liquidity providers who use last-look provision.
Hotspot is similar to Currenex, except that the minimum ticket size
is 50,000 units and ticks are delayed by one second.

Hotspot does have liquidity providers who use last-look provi-
sion, though quotes from these traders can be filtered out. However,
relative to the Currenex non-last-look feed, Hotspot’s is relatively
wide, suggesting the feature of allowing market participants to have
a “last look” undermines liquidity and leads to wider spreads.

Oanda

Oanda is one of the major FCMs and one of the original FX dealers on
the Internet.? The company’s focus has been to build a highly scalable
platform that executes transactions at minimum cost. In addition to
the major currencies, Oanda offers trading in exotic exchange rates,
precious metals and contracts for difference? of stock indexes and
US Treasuries. Transaction prices are identical for tickets as small
as US$1 and as large as US$10 million, and the same across differ-
ent market segments. Interest is paid on a second-by-second basis.
Unlike traditional trading venues, Oanda offers firm quotes to its
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clients and hedges excess exposure with institutional market mak-
ers. Oanda’s main revenue is generated from market making; it earns
the spread between bid and ask prices at which its customers trade.

CME

The largest currency futures market is operated by the Chicago Mer-
cantile Exchange (CME) Group,® with an average daily notional vol-
ume of approximately US$100 billion, most of it is being traded
electronically. Similar to other futures products, currency futures
are traded in terms of contract months with standard maturity dates
typically falling on the third Wednesdays of March, June, September
and December. The CME Group offers 49 currency futures contracts;
the crosses of the G10 countries (ie, AUD, CAD, CHF, EUR, GBP, JPY,
NOK, NZD, SEK, USD) as well as crosses of emerging markets, such
as BRL, KRW and RMB. The minimum tick size is one pip, and the
ticket size is US$125,000. Since 2010, CME Group has offered trading
in selected E-micro FX futures, which are one-tenth of the standard
size. In most cases, traders will offset their original positions before
the last day of trading. Less frequently, contracts are held until the
maturity date, at which time the contract is cash-settled or physi-
cally delivered, depending on the specific contract and exchange.
Only a small percentage of currency futures contracts are settled
in the physical delivery of foreign exchange between a buyer and
a seller. The CME is responsible for establishing banking facilities
in each country represented by its currency futures contracts, and
these agent banks act on behalf of the CME and maintain a foreign
currency account to accommodate any physical deliveries.

Unlike the FX spot market, CME provides a centralised pricing
and clearing service, ie, the market price and the order book infor-
mation for a currency futures contract will be the same regardless
of which broker is used, and the CME guarantees each transaction.
CME Group ensures that self-regulatory duties are fulfilled through
its Market Regulation Department, including market integrity pro-
tection by maintaining fair, efficient, competitive and transparent
markets.

Trading algorithms

We distinguish between two classes: algorithmic execution and algo-
rithmic decision-making. The first addresses the automated execu-
tion of large orders in small tickets with the objective of minimising

69



HIGH-FREQUENCY TRADING

the price impact and/or ensuring the anonymity of execution. The
second class groups the automated algorithms designed to generate
Alpha.

When do we classify a trading algorithm as belonging to the class
of high-frequency traders? Is the decisive criterion the number of
trades? Or are there additional criteria? To shed some light on these
questions, we follow Gomber et al (2011), who consider HFT as a
subset of algorithmic trading (AT). HFT and AT share common fea-
tures: pre-designed trading decisions, used by professional traders;
observing market data in real-time; automated order submission;
automated order management, without human intervention; use
of direct market access. Gomber et al suggest criteria that only AT
fulfil: agent trading; minimising market impact (for large orders);
achievement of a particular benchmark; holding periods of possibly
days, weeks or months; working an order through time and across
markets.

Finally, we list criteria that only HFT satisfy: very high num-
ber of orders; rapid order cancellation; proprietary trading; profit
from buying and selling; no significant positions at the end of day;
very short holding periods; very low margins extracted per trade;
low latency requirement; use of co-location/proximity services and
individual data feeds; a focus on highly liquid instruments.

Indeed, as pointed out by Gomber et al (2011), HFT is not a trading
strategy as such.

Algorithmic execution

The main idea of these strategies is to minimise the impact on price
movement of buying or selling a large order. The algorithms at hand
basically slice up the order into smaller orders and select appropriate
times to transact in the hope that the average price will be close to
the current price, that the impact will be low and that the trades will
go unnoticed.

The basic algorithm is called time-weighted average price and
slices time in an equal manner given a time horizon. This algorithm
is not clever in the sense that it does not follow market activity
and is easily detectable. An alternative is to define time as buck-
ets of volume and allow the algorithm to trade a quantity when a
given volume has been transacted in the market; in this case we talk
about volume-weighted average price. Various improvements have
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been proposed to make these algorithms more adaptive to market
activity and to include the effect of news. More details, as well as a
classification, can be found in Almgren (2009) and Johnson (2010).

Algorithmic decision-making

We list the most common trading strategies designed to generate
profit; in general they are believed to contribute to market liquid-
ity (Chaboud et al 2012). The complexity of the algorithms and the
large number of decisions that need to be taken implies that these
algorithms need to be computerised and cannot be generated by
hand. The algorithms are not discretionary decisions, as all of the
responses of the trading model are predetermined. Depending on
their implementations, these strategies can be classified either as
HFT or not.

Market-making strategies are designed to offer temporary liquid-
ity to the market by posting bid and ask prices with the expectation
of earning the bid and ask spread to compensate for losses from
adverse price moves. In some trading venues, these types of strate-
gies are incentivised with rebate schemes or reduced transactions
fees. We shall explain later (see pp. 80ff) how such incentives can be
used to make price discovery more robust and contribute to price
stability.

Statistical arbitrage strategies are a class of strategies that take
advantage of deviations from statistically significant market rela-
tionships. These relationships can, for example, be market patterns
that have been observed to occur with some reasonable likelihood.

Mean reversion strategies assume that the price movement does
not persist in one direction and will eventually revert and bounce
back. This hypothesis is derived from the fact that positions eventu-
ally need to be closed, triggering a price reversal. An example of an
automated strategy is described in Dupuis and Olsen (2012).

There exist arbitrage strategies to take advantage of price differ-
ences across platforms or take advantage of information ahead of
delays. Traders embark, for example, on triangular arbitrage (eg, if
buying x units of EUR/USD and selling x units of EUR/GBP, and
selling the appropriate units of GBP/USD leads to an instantaneous
and risk-free profit).

Liquidity detection strategies are used to spot large orders in the
market and/or to trigger a particular behaviour by other market

71



HIGH-FREQUENCY TRADING

Table 4.1 Approximation of the percentage of filled trades per trading
frequencies expressed in trades per day on EBS (Schmidt 2011)

Type Frequency Percentage
MT — 1.9
Slow Al <500 1.5
HFT 500-3000 2.3
Ultra-HFT >3000 4.2

MT, manual trader; Al, automated interface.

participants. These kinds of strategy are at the borderline of what is
deemed ethical; examples are pinging (small orders to possibly hit
hidden orders), quote stuffing (entering and immediately cancelling
a large amount of orders to blur out the real state of the limit order
book) or momentum ignition, where orders are placed to exacerbate
a trend. These strategies are equivalent to spamming in the Internet;
there is a need for subtle mechanism to minimise this type of abuse.
We discuss such a mechanism below (see pp. 80ff).

Trading frequencies

To draw the landscape of the trading frequencies, we report on the
results of Schmidt (2011) and Masry et al (2012), which have analysed
transaction data from the currency market and provide the profile
of the high-frequency traders with the durations of their positions.
Schmidt (2011) investigates transaction data from EBS, where, we
recall, trading takes place through a limit order book and where the
minimal order size is of US$1 million, which makes it a trading venue
for large players. The study by Masry et al (2012) analyses transaction
data from the market maker Oanda that, in contrast to EBS, has
largely retail and some institutional investors; all traders have the
same price terms for transactions from US$1 up to US$10 million.
Schmidt (2011) describes in detail the composition of the traders at
EBS based on transaction data during the six months between May
2011 and the end of November 2011. The study defines two types
of traders: manual traders (MTs), who use a graphic-user-interface-
based (GUI-based) based access, and automated traders, who use
an automated interface (Al) for trading. Al trading is further sub-
divided into three subcategories: “Slow Al” at less than 500 trades
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Table 4.2 Percentages of trades that were executed at various
frequencies f on the Oanda platform, as computed by Masry et al
(2013)

Frequency  Percentage

f<50 27.7

50 < f < 100 7.9
100 < f < 500 125
f > 500 52.0

Frequencies f are expressed in trades per day. Transaction data spans
January 2007-March 2009.

per day, “HFT” at between 500 and 3000 trades per day and “Ultra-
HFT”, with more than 3000 trades per day. MTs account for 75% of
EBS customers and more than 90% of MTs submit on average less
than 100 orders a day. For EUR/USD, the currency pair with the
largest volume, the average number of daily orders submitted by
EBS customers are: MT 3.7%; Slow Al 5.7%; HFT 29%; Ultra-HFT
61.6%. Other currency pairs show similar patterns. The difference
between Ultra-HFT and MT appears to be massive at first sight, but
this neglects the fact that high-frequency traders typically cancel
a large percentage of their orders. Schmidt (2011) reports that the
average fill ratio for various EBS customer groups is around 50% for
MTs, and (considering only Al belonging to the professional trading
community; see Schmidt 2011) 26.6% for Slow Al 8.1% for HFT and
6.8% for Ultra-HFT. Using the above numbers, we approximate the
percentage of filled trades per trading frequency and show these in
Table 4.1.

Masry et al (2013) analyse the transactions done at Oanda between
January 2007 and March 2009. The data set comprises 110 million
transactions belonging to 46,000 different accounts acting in 48 dif-
ferent currency pairs. First Masry et al categorised the traders, assign-
ing them a trading frequency by computing the average number of
transactions they made per day. Note that special care was taken to
differentiate between accounts with different trading frequencies.
Percentage shares of the different trading frequencies are shown in
Table 4.2.

Assuming that manual traders can trade at most 50 times a day,
the corresponding percentage matches the one on EBS (26.6%). This
proportion is suggested by Tables 4.1 and 4.2.
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ACADEMIC LITERATURE

With the rapid increase of trading volume from HFT, academic stud-
ies have investigated how computerised trading affects the overall
market quality. Cvitanic and Kirilenko (2011) derive theoretical dis-
tributions of transaction prices in limit order markets populated by
low-frequency traders (humans) before and after the entrance of a
high-frequency trader (machine). They find that the presence of a
machine is likely to change the average transaction price and that
the distribution of transaction prices has more mass around the cen-
tre and thinner tails. Jarrow and Protter (2011) express concern that
the speed advantage of HF traders and the potential commonality
of trading actions among computers may have a negative effect on
the informativeness of prices. This is because computerised traders,
triggered by a common signal, collectively act as one big trader, giv-
ing rise to price momentum, causing prices to be less informationally
efficient. Cespa and Foucault (2012) argue that the self-reinforcing
relationship between price informativeness and liquidity is a source
of contagion and fragility: a small drop in the liquidity of one secu-
rity propagates to other securities and can, through a feedback loop,
result in a large drop in market liquidity. This leads to multiple equi-
libria characterised by either high illiquidity and low price informa-
tiveness or low illiquidity and high price informativeness, where the
former type of equilibrium generates a liquidity crash similar to the
Flash Crash on May 6, 2010.

Empirical academic research has mostly focused on the effects
of HFT on the market quality in equity markets. The studies have
shown that, in general, computerised trading improves traditional
measures of market quality and contributes to price discovery. Hen-
dershott et al (2011) study the 30 largest DAX stocks on the Deutche
Boerse and find that AT represents a large fraction of the order flow
and contributes more to price discovery than human traders. Algo-
rithmic traders are more likely to be at the inside quote when spreads
are high than when spreads are low, suggesting that algorithmic
traders supply liquidity when this is expensive and demand lig-
uidity when this is cheap. Hendershott et al find no evidence that
AT increases volatility. Hendershott and Riordan (2011) examine
the impact AT has on the market quality of NYSE listed stocks.
Using a normalised measure of NYSE message traffic surround-
ing the NYSE's implementation of automatic quote dissemination in
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2003, they find AT narrows spreads, reduces adverse selection and
increases the informativeness of quotes, especially for larger stocks.
Hasbrouck and Saar (2012) measure HFT activity by identifying
“strategic runs” of submission, cancellations and executions in the
Nasdagq order book. They find that HFT improves market quality by
reducing short-term volatility, spreads and depth of the order book.
Menkveld (2012) claims a large high-frequency trader provides lig-
uidity, and its entrance into the market leads to a decrease in spreads.
Brogaard (2010) examines the impact of HFT on the US equity mar-
ket using a unique HFT data set for 120 stocks listed on Nasdagq.
HFT is found to add to price discovery, providing the best bid and
offer quotes for a significant portion of the trading day, and reduc-
ing volatility. However, the extent to which HFT improves liquidity
is mixed, as the depth high-frequency traders provide to the order
book is a quarter of that provided by non-high-frequency traders.

The most detailed examination of the impact of HFT on the FX
market was made by Chaboud et al (2012) using high-frequency trad-
ing data from EBS for the period September 2003-September 2007
in three exchange rates: EUR/USD, USD/JPY and EUR/JPY. The
crucial feature of their data set is that, on a minute-by-minute fre-
quency, the volume and direction of human and computer trades are
explicitly identified, allowing explicit measurement of the impact of
high-frequency traders. They find very strong evidence that comput-
ers do not trade with each other as much as predicted, concluding
that the strategies used by algorithmic traders are more correlated
and less diverse than those used by human traders.

Next, they investigate the effect that both algorithmic trading
activity and the correlation between algorithmic trading strategies
have on the occurrence of triangular arbitrage opportunities. They
indicate that algorithmic trading activity is found to reduce the num-
ber of triangular arbitrage opportunities, as the algorithmic traders
quickly respond to the posted quotes by non-algorithmic traders and
profit from any potential arbitrage.

Furthermore, a higher degree of correlation between algorith-
mic trading strategies reduces the number of arbitrage opportuni-
ties. There is evidence that an increase in trading activity where
computers are posting quotes decreases the number of triangu-
lar arbitrage opportunities. Algorithmic traders make prices more
efficient by posting quotes that reflect new information.
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Chaboud et al also investigate the effect algorithmic traders on the
degree of autocorrelation in high-frequency currency returns: they
estimate the autocorrelation of high-frequency, five-second returns
over five-minute intervals. Similar to the evolution of arbitrage
opportunities in the market, the introduction and growth of algorith-
mic trading coincides with a reduction in the absolute value of auto-
correlation. On average, algorithmic trading participation reduces
the degree of autocorrelation in high-frequency currency returns by
posting quotes that reflect new information more quickly.

Finally, Chaboud et al report highly correlated algorithmic trading
behaviour in response to an increase in absolute value of the autocor-
relation in high-frequency currency returns; this supports the con-
cern that high-frequency traders have very similar strategies, which
may hinder the price discovery process (Jarrow and Protter 2011).

HFT during time of market stress

The availability of liquidity has been examined in equity markets;
academic studies indicate that, on average, high-frequency traders
provide liquidity and contribute to price discovery. These studies
show that high-frequency traders increase the overall market quality,
but they fail to zoom in on extreme events, where their impact may
be very different. A notable exception is the study by Kirilenko et al
(2011) that uses audit-trail data and examines trades in the E-mini
S&P 500 stock index futures market during the May 6, 2010, Flash
Crash. They conclude that high-frequency traders did not trigger the
Flash Crash; HFT behaviour caused a “hot potato” effect and thus
exacerbated market volatility.

In contrast to these studies, the following sections provide anec-
dotal evidence of the behaviour of computerised traders in times of
severe stress in foreign exchange markets:

e the JPY carry trade collapse in August 2007;
¢ the May 6, 2010, Flash Crash;
¢ JPY appreciation following the Fukushima disaster;

e the Bank of Japan intervention in August 2011 and Swiss
National Bank intervention in September 2011.
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While each of these episodes is unique in terms of the specific
details and they occurred at different stages of the evolution of high-
frequency traders, these events provide valuable insight into how
computerised traders behave in periods of large price moves.

August 2007 yen appreciation

The August 16, 2007, USD/JPY price rise was the result of the
unwinding large yen carry-trade positions; many hedge funds and
banks with proprietary trading desks had large positions at risk and
decided to buy back yen to pay back low-interest loans. Chaboud
et al (2012) provide details of this event, and report that the event
had one of the highest realised volatilities and the highest absolute
value of serial correlation in five-second returns. The yen appreci-
ated sharply against the US dollar at around 06h00 and 12h00 (New
York time). The two sharp exchange rate movements happened
when trading algorithms, as a group, aggressively sold dollars and
purchased yen; at the other side of these trades were human traders,
not other algorithms. Human traders were selling and buying dol-
lars in almost equal amounts. The orders initiated by computers were
more correlated than the than those of humans. After 12h00, human
traders, in aggregate, began to buy dollars fairly aggressively, and
the appreciation of the yen against the dollar was partly reversed.

Flash Crash, May 6, 2010

On May 6, 2010, the US stock market experienced one of its biggest
price drops, with the Dow Jones Industrial Average (DJIA) index
losing 900 points in a matter of minutes. It was the second largest
intraday point swing, 1010.14 points, and the biggest one-day point
decline, of 998.5 points. Such a large swing raised concerns about the
stability of capital markets, resulting in a US Securities and Exchange
Commission (SEC) investigation (US Securities and Exchange Com-
mission and the Commodity Futures Trading Commission 2010).
This report claimed that the crash was triggered by a sell algorithm
of a large mutual fund executing a US$4.1 billion sell trade in the
E-mini S&P 500 futures, and while HFT did not spark the crash, it
does appear to have created a “hot potato” effect contributing to the
crash. Nanex (2010) reported that quote saturation and NYSE Con-
solidated Quotation System (CQS) delays, combined with negative
news from Greece together with the sale of E-mini S&P 500 futures
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“was the beginning of the freak sell-off which became known as the
Flash Crash”. Menkveld and Yueshen (2013) analysed the May 6,
2010, Flash Crash using public and proprietary trade data on E-mini
S&P 500 futures and S&P 500 Exchange Traded Fund (ETF) and
found that the large mutual fund, whose E-mini trading reportedly
contributed to the crash, was relatively inactive during the period of
the crash, as its net selling volume was only 4% of the total E-mini
net sells.

Sharp price movement was also witnessed in the FX market.
Analysing the data from EBS, Bank for International Settlements
(2011) showed that algorithmic execution comprised about 53.5%
of total activity, versus 46.5% manual, which was higher than on
average (45% algorithmic, 55% manual for 2010), suggesting that
algorithmic participants did not reduce activity, as was the case
for traditional market participants. The price movement is com-
pared against two additional measurements, the ratio of algorith-
mic investor order submissions on May 6 to average algorithmic
investor order submissions for the prior period, and the ratio of
manual investor order submissions on May 6 to average manual
investor order submissions for the prior period. Both manually and
algorithmically submitted orders were in fact much higher than the
average of the prior period. The share of algorithmic activity gener-
ated by the professional trading community (PTC) as a share of total
algorithmic activity was higher than the average, suggesting that
the increased contribution of algorithmic participants was driven
largely by the increased activity of PTC participants.

March 2011 yen appreciation

Early in the morning of March 17, 2011, in the days following the
Fukushima Daiichi earthquake, the USD/JPY declined by 300 pips,
from around 79.50 to below 76.50 in just 25 minutes, between 05h55
and 06h20 Tokyo time (16h55-17h20 New York time on March 16,
2011). This price movement was triggered by stop-loss trades of retail
FX margin traders (Bank for International Settlements 2011). The
margin calls that the retail aggregators executed on behalf of their
traders set off a wave of USD selling in a thin market. Many banks
withdrew from market making and others widened their spreads so
much that their bids were far below the last prevailing market price.
This created a positive feedback loop of USD/JPY falling and lead-
ing to even more stop-losses until the pair hit 76.25 at around 06h20.
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The exchange rate recovered in the next 30 minutes to 78.23 as hedge
funds and new retail investors began to build up fresh long posi-
tions. Banks, having withdrawn from making prices during the most
volatile period, resumed market making. The USD/JPY dropped
again at around 07h00, to reach 77.10, coinciding with another round
of automated stop-outs, executed this time by the FX margin-trading
brokers that participate on a particular trading platform on the Tokyo
Futures Exchange. When the system restarted at 06h55, numerous
compulsory stop-out orders were generated over five minutes to
the six market makers that have obligations to provide prices to this
platform (an estimated US$2 billion of USD/JPY selling). During this
episode, both high-frequency traders and traditional market makers
withdrew from the market.

The episode suggests that, even in trading venues with desig-
nated market makers, there is no guarantee of the quality of the
quotes, as some market makers with formal obligations to quote
prices widened their bid—offer spread considerably during that time.

Central bank interventions
This section discusses the behaviour of high-frequency traders
during central banks interventions. We focus on two events: the
Bank of Japan (BOJ) intervention on August 4, 2011, following the
Fukushima Daiichi earthquake, and the Swiss National Bank (SNB)
intervention on September 6, 2011, following a strong appreciation of
Swiss franc. As mentioned previously (see page 73), Schmidt (2011)
separates traders into manual traders, who use EBS’s proprietary
GUI access for order management, and automated traders, who use
Al for trading (slow Al users, high-frequency traders and ultra-high-
frequency (UHF) traders). Two liquidity measures are calculated:
the percentage of time that traders of each group provide two-sided
liquidity, and bid-offer spread compiled on a one-second grid and
averaged over 10-minute time intervals, with USD/JPY, EUR/JPY
currency pairs for BOJ intervention, and EUR/CHF, USD/CHF
currency pairs for SNB intervention.

The BOJ intervention at 01h00 GMT on August 4, 2011, caused
a sharp jump in the USD/JPY exchange rate that did not disrupt
the two-sided market. MTs provided liquidity 100% of the entire
intervention time, while HF traders and slow Al failed to provide
two-sided liquidity only for two seconds and eight seconds, respec-
tively. UHF traders provided only intermittent liquidity during first
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the 10 minutes after intervention and withdrew from the market for
several minutes around 02h40 GMT. The spread was always deter-
mined by HFT, while the spread formed by slow Al users after the
intervention was wider than that of MT users, implying slow Al may
be even more risk averse than MTs.

The SNB intervention on September 6, 2011, lasted for 30 minutes,
from 08h00 to 08h30 GMT. Liquidity provided by slow Al users for
the USD/CHF exchange rate had notable gaps prior to the SNB inter-
vention. The intervention briefly decreased the percentage of time
for which all customer groups quoted two-way prices. HF traders
were the quickest, while UHF traders were the slowest in restor-
ing the two-sided market. HF traders were the most active in set-
ting the bid—offer spread during and after the intervention. For the
EUR/CHEF exchange rate, MTs and HF traders were the best lig-
uidity providers during the SNB intervention. While the SNB inter-
vention affected the EUR/USD exchange rate, its liquidity was not
impaired.

These two events suggest that high-frequency traders can be valu-
able contributors to market liquidity during dramatic price moves of
exchange rates, such as during central bank interventions. In other
scenarios, HF traders can also destabilise price action, because they
may be forced to close out positions all of a sudden, thus triggering
an avalanche. In the next section, we shall discuss how organised
exchanges can improve price discovery and reduce the likelihood of
a “flash crash”.

ALTERNATIVE LIMIT ORDER BOOK

Price action in financial markets is at times erratic, because second-
by-second transaction volume is a mere trickle, and minor market
orders can trigger a price spike that can set off a large price move due
to margin calls. Price movements are spurious and respond in a non-
linear fashion to imbalances of demand and supply. A temporary
reduction in liquidity can easily result in significant price moves,
triggering stop losses and cascades of position liquidations. High-
frequency traders now account for a large share of total transaction
volume; if these traders are taken by surprise and close out their
positions in one go, then this can trigger a massive sell-off, akin to
the May 6, 2010, Flash Crash.
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In response to the Flash Crash and other similar events, regula-
tors have introduced several rules to ensure orderly functioning of
capital markets. Market-wide circuit breakers, the so-called “Limit
Up-Limit Down”, have been put in place in US equity markets, to
halt trading in the case of violent price moves (US Securities and
Exchange Commission 2012). European regulators went a step fur-
ther and burdened trading firms that use HFT with several new trad-
ing obligations (European Commission 2011). First, high-frequency
traders are required to provide two-sided liquidity on a continu-
ous basis, regardless of the prevailing market conditions. Second,
all orders submitted by high-frequency traders will be obligated to
stay in the order book for at least 500 milliseconds. Orders placed
in the order book cannot be cancelled or changed during that pre-
defined time frame. Exchanges cap the number of orders that high-
frequency traders can submit or charge them additional costs. The
most extreme form of regulation is the so-called Tobin Tax, a small
fee on transactions of financial securities. France is the first Euro-
pean country to impose such a transaction tax, which amounts to
0.2%, to be paid on all transactions by companies headquartered
in France. Becchetti et al (2013) analysed the impact of the intro-
duction of the French Tobin tax on volume, liquidity and volatil-
ity of affected stocks and documented that the tax has a significant
impact in terms of reduction in transaction volumes and intraday
volatility.

High-frequency traders are required to invest in superior tech-
nology and sophisticated trading models, risking their own cap-
ital, while providing ample liquidity and performing valuable
service to market participants. Regulators and operators of organ-
ised exchanges have imposed additional costly obligations on high-
frequency traders; there has been little discussion on what incentives
are necessary to induce liquidity providers to stay in the market dur-
ing stressful periods. We believe that the limit order queuing mech-
anism needs to reward competitive two-sided limit orders and give
them preferential queuing status over one-sided limit orders.

Therefore, in the rest of this section we propose an order book
mechanism that combines price ranking with spread ranking to
queue limit orders, which we call spread/price-time priority. We
use the agent-based model by Bartolozzi (2010) to analyse the
benefits of the aforementioned priority mechanism. The simulations
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provide evidence that the spread/price-time priority is successful
in increasing the overall market quality.

Spread/price-time priority

Most modern trading venues operate under a price-time priority
mechanism. Price-time priority determines how limit orders are pri-
oritised for execution. The primary priority is price: the lowest sell
limit order (offer) is the first to receive execution against market buy
orders, while the highest buy limit order (bid) is the first to receive
execution against market sell order. The secondary ranking attribute
is the time at which a limit order has been submitted to the order
book. We propose an order queuing mechanism based on spread/
price-time priority, where the ranking mixes the price ranking and
the spread ranking according to a parameter « < [0,1].

Liquidity providers submit limit orders and those limit orders can
be either one sided (ie, a submitted limit order is either a buy or sell
limit order) or two sided, in which case the trader simultaneously
submits a buy and a sell limit order. The limit order is assigned with
a rank, rank ().

We propose an alternative set-up. We want to reward market par-
ticipants, who reveal information not only about the trade that they
want to do, but also about the other side of the trade. If a trader
wants to sell, we do not rank their order only on the basis of their
sale price, but also on the size of the spread: how far away the trader
sets the ask. This is valuable information for price discovery; if the
spread is narrow, then the market maker has a balanced expectation;
if the spread is wide, then their expectation is skewed.

The queuing of limit orders within the order book is done accord-
ing to a weighted average between a price contribution (weight )
and a spread contribution (weight 1 — ). In other words, the rank
of an limit order equals

rank () = & X price +(1 — &) X spread

The buy/sell limit order with lowest rank receives the highest prior-
ity for execution against sell/buy market orders. The price rank of
limit orders is computed as the price difference from the currently
resting limit order with best price. If the price of the newly submit-
ted limit order sets the new best price, then the price rank of limit
order will equal zero. Limit orders resting on the same side will
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update their price rank according to the newly set best price.® In
other words, price ranking of a submitted limit order equals

kbest

ask —as , sell limit order

price = {bid”®*' —bid, buy limit order
0, new best buy/sell price

where ask”®' and bid"®*" are the best selling price and best buy-
ing price of resting limit orders. The spread ranking of two-sided
limit order is computed as the difference between the price of buy
limit order and sell limit order. One-sided limit orders have the
same spread ranking as the resting two-sided limit order with worst
spread. In other words

ask —bid, two-sided limit order

spread = {

dmax

sprea , one-sided limit order

where spread™ is the largest spread of currently resting two-sided

limit order. Therefore, the spread ranking of one-sided limit orders
are “at par” as spread ranking of resting two-sided limit order with
worst spread. Finally, if the limit orders have the same rank, rank (),
time priority determines the queuing position. We note that the
parameter is used to “tune” the significance of spread versus price
for primary ranking. For instance, decreasing the & parameter puts
more weight to ranking based on spread, therefore providing a big-
ger incentive for traders to submit two-sided limit orders to the order
book as these limit orders will have greater priority for execution.
On the other hand, increasing the & parameter puts more weight
to ranking based on price, therefore providing incentive for traders
to submit price competitive limit orders. Note that setting & = 1
reduces the limit order queuing mechanism to price-time priority,
while setting & = 0 reduces the limit order queuing mechanism to
spread-time priority, where the price plays no role at all in queue-
ing limit orders. Finally, we note that it is possible for buy and sell
limit orders to “cross” or “lock” in price, for parameter « larger than

zero.”

Agent-based model

We have used the agent-based model by Bartolozzi (2010) to evaluate
the impact of spread/price-time priority ranking of limit orders on
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the market quality. The agent-based model has shown to be able to
reproduce several empirical features of the high-frequency dynam-
ics of the market microstructure: negative autocorrelation in returns,
clustering of trading activity (volatility, traded volume and bid—ask
spread), non-linear response of the price change to the traded vol-
ume, as well as average shape of the order book and volume imbal-
ances. We shall briefly present the model; for the details we refer the
reader to Bartolozzi (2010).

The market model evolves in discrete time steps, during which
agents may undertake a certain action or just wait for a more prof-
itable opportunity, ie, cancellation or active trading, the latter includ-
ing both limit and market orders. All decision steps are based on
dynamical probabilities, which are functions of private and public
information. At each step, specifications for each order, such as type
(limit or market), price (for limit orders) and volume are decided.
The agents have access to the current state of the limit order book:
all of the smoothed indicators are derived by this knowledge, such
as the exponential midpoint price or volatility, and are classified
as public information. Private information is represented by a sim-
ple Gaussian process, independent for each trader, with zero mean
and standard deviation proportional to the volatility of the market.
The limit order is automatically removed if it has not been executed
in a certain number of time increments, or according to a strategic
decision based on the current market condition, whereas it is more
likely to cancel the limit order in a more volatile market. Agents
with no orders in the order book evaluate the possibility of entering
the market and their decision is based on a stochastic variable that
represents the “level of confidence” in their price forecast, ie, mar-
ket sentiment, which relates the public and the private information.
The market sentiment can be thought of as the convolution between
the agents, their trading strategies, the private information and the
risk factors evaluated via the public information: the stronger the
signal, the more likely it is that the trader takes a decision. If the
agent enters the market, the type of the order is decided based on
its relative position to the best prices: if the resulting submission
price is greater than the ask price and the order is long (or lower
than the bid price and the trade is short), then this is interpreted
as a market order, while all the other orders are considered limit
orders.
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Our contribution to the agent-based model is the spread/price—-
time priority ranking of limit orders and the ability of traders to
post two-sided limit orders, ie, to be market makers. If the trader
decides to post a limit order, they will post a two-sided limit order
with probability p € [0,1], or they will a post one-sided limit order
with probability 1 — p. In the case when the trader decides to post a
two-sided limit order, they will do so by maintaining a spread of at
most 10 ticks (in real life, this amounts to a spread of at most 10 pips).
Therefore, the agent-based model has two degrees of freedom that
are left for user input: the parameter «, determining the primary
ranking rank(«) in spread/price-time priority, and parameter p,
determining the probability of submitting a two-sided limit order.

Results and conclusion

In this section we present the results of the agent-based model simu-
lations, claiming that spread / price—time priority ranking is suitable
for decreasing the market volatility, while not affecting the overall
volume (this effect on volume is likely to occur with a brute-force
mechanism such as a Tobin tax). Therefore, spread / price—time prior-
ity ranking provides benefits to both short- and long-term traders:
high-frequency traders would keep their source of revenue from
market making, while long-term investors would be able to operate
in a stable market environment.

The agent-based model has two degrees of freedom: the param-
eter « € [0,1] determining the primary ranking rank(«), and the
parameter p € [0,1] determining the probability of submission of
two-sided limit orders. Both of these parameters are chosen on a
linear grid of nine values, ranging from 0.1 to 0.9. Each simula-
tion has 1, 000 iterations and, running it for all pairs of parameters
(&, p), we obtained a total of 81 simulation runs. Our primary con-
cern was to analyse if the spread/price-time ranking was success-
ful in decreasing the price volatility while not reducing the overall
volume.

We compute price volatility as an average of price volatilities com-
puted at smaller and larger scales. In other words, price volatility
o is an average of the price volatility for 1, 2, 5, 10, 15, 20, 25 and
50 time steps, 6t

Ost + Oo5t + 056t + 0108t + 0156t + 0205t + 0256t + O506¢

o= 3 4.1)
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Figure 4.2 (a) Average volatility and (b) average volume of agent-based
model for a linear grid of probabilities (p = 10-90%) and parameter «
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where 0;5; is the standard deviation of returns computed after nét
iterations. In this manner we have included timescales of interest to
both high-frequency and low-frequency traders. The total volume is
computed as the total turnover in a simulation run.

Figure 4.2 shows the average price volatility and total volume.
Part (a) shows the price volatility, while part (b) shows the total vol-
ume, both as a function of & determining priority ranking rank ()
and as a function of p determining the probability of submitting
a two-sided limit order. Figure 4.2 indicates that decreasing «, ie,
putting more weight on the spread, results in lower volatility regard-
less of the probability p of submitting a two-sided order. Further-
more, it is clear that the total volume is highly dependent on param-
eter p determining the probability of submitting a two-sided limit
order, where the higher probability will result in greater turnover of
volume. On the other hand, there does not seem to be an obvious
relationship between the resulting volatility and turnover of volume.
In summary, the lower volatility obtained with spread/price-time
does not necessarily lead to a loss of volume.
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CONCLUSION

The foreign exchange market with a daily spot transaction volume
of US$1.4 trillion is at the core of the global economy; the foreign
exchange market sets the exchange rates between countries and is
decisive for the health of the economic system. Today, there is sig-
nificant evidence that the spuriousness of price action can cause a
major price cascade in the foreign exchange markets, akin to the
flapping of the wings of a butterfly causing a tornado. These price
distortions do not wash out with the other economic uncertainties.
A price crash in the foreign exchange market can destabilise the
economic system even further. We review clear evidence that high-
frequency trading provides liquidity in dramatic events, acknowl-
edging that some trading practices are on the verge of being uneth-
ical. To minimise the occurrence of such practices, we have sug-
gested an alternative queuing system for organised exchanges that
rewards market makers for revealing private information and pro-
viding liquidity on an ongoing basis. The simulations indicate that
price quality improves significantly, without the dramatic impact
on volume that might well occur with the introduction of Tobin tax.
There remain many open questions in the detailed mechanics of how
price shocks are propagated. Researchers need access to comprehen-
sive data sets so that they can study in detail the market mechanics
and get a deeper understanding of the complex feedback processes.
It is necessary to discuss and analyse alternative queuing systems
in order to develop market mechanisms that are robust and ensure
consistent pricing, independent of random variations of supply and
demand. Financial markets are the equivalent of bridges in a trans-
port system; they need to be stable and robust to rapidly chang-
ing buy and sell flows to be optimal for the economic system as a
whole.

1 One millisecond is one thousandth of a second.

2 The last-look provision is a waiting period of several hundred milliseconds in which the
liquidity provider has an option to fill or pass the incoming market order.

3  See http://www.oanda.com.

4 Contract for difference is a financial derivative that allows traders to speculate on price
movement of the underlying instrument, without the need for ownership of the instrument.

5 Smaller currency futures markets are present worldwide, including NYSE Euronext, the Tokyo
Financial Exchange and the Brazilian Mercantile and Futures Exchange.
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6 The updating process will manifest as adding a constant to ranks of all limit orders resting
on the same side, ie, rank(); = rank(«); + const, i = 1,...,n, and it will not change the
queuing of resting limit orders regardless of the parameter & € [0,1].

7 Crossed quotes occur in a given security when the best buying price is higher than the best
selling price. Locked quotes occur when the best buying price is equal to the best selling price.
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Machine Learning for
Market Microstructure and
High-Frequency Trading

Michael Kearns and Yuriy Nevmyvaka
University of Pennsylvania

In this chapter, we give an overview of the uses of machine learn-
ing for high-frequency trading (HFT) and market microstructure
data and problems. Machine learning is a vibrant subfield of com-
puter science that draws on models and methods from statistics,
algorithms, computational complexity, artificial intelligence, control
theory and a variety of other disciplines. Its primary focus is on com-
putationally and informationally efficient algorithms for inferring
good predictive models from large data sets, and thus it is a natural
candidate for application to problems arising in HFT, for both trade
execution and the generation of Alpha.

The inference of predictive models from historical data is obvi-
ously not new in quantitative finance; ubiquitous examples include
coefficient estimation for the capital asset pricing model (CAPM),
Fama and French factors (Fama and French 1993) and related ap-
proaches. The special challenges for machine learning presented
by HFT generally arise from the very fine granularity of the data
— often microstructure data at the resolution of individual orders,
(partial) executions, hidden liquidity and cancellations — and a lack
of understanding of how such low-level data relates to actionable
circumstances (such as profitably buying or selling shares or opti-
mally executing a large order). Whereas models such as CAPM and
its variants already prescribe what the relevant variables or “fea-
tures” (in the language of machine learning) are for prediction or
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modelling (excess returns, book-to-market ratios, etc), in many HFT
problems we may have no prior intuition about how, if at all, the dis-
tribution of liquidity in the order book (say) relates to future price
movements. Thus, feature selection or feature engineering becomes
an important process in machine learning for HFT, and is one of our
central themes.

Since HFT itself is a relatively recent phenomenon, there are few
published works on the application of machine learning to HFT.
For this reason, we structure this chapter around a few case studies
from our own work (Ganchev et al 2010; Nevmyvaka et al 2006). In
each case study, we focus on a specific trading problem we would
like to solve or optimise, the (microstructure) data from which we
hope to solve this problem, the variables or features derived from
the data as inputs to a machine learning process and the machine
learning algorithm applied to these features. The cases studies we
shall examine are the following.

e Optimised trade execution via reinforcement learning (Nev-
myvaka et al 2006). We investigate the problem of buying
(respectively, selling) a specified volume of shares in a speci-
fied amount of time, with the goal of minimising the expendi-
ture (respectively, maximising the revenue). We apply a well-
studied machine learning method known as “reinforcement
learning” (Sutton and Barto 1998), which has its roots in con-
trol theory. Reinforcement learning applies state-based models
that attempt to specify the optimal action to take from a given
state according to a discounted future reward criterion. Thus,
the models must balance the short-term rewards of actions
against the influences these actions have on future states. In
our application, the states describe properties of the limit order
book and recent activity for a given security (such as the bid—
ask spread, volume imbalances between the buy and sell sides
of the book and the current costs of crossing the spread to
buy or sell shares). The actions available from each state spec-
ify whether to place more aggressive marketable orders that
cross the spread or more passive limit orders that lie in the
order book.

e Predicting price movement from order book state. This case
study examines the application of machine learning to the
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problem of predicting directional price movements, again from
limit order data for equities. Using similar but additional state
features as in the reinforcement learning investigation, we
seek models that can predict relatively near-term price move-
ments (as measured by the bid—ask midpoint) from market
microstructure signals. Again, the primary challenge is in the
engineering or development of these signals. We show that
such prediction is indeed modestly possible, but it should be
treated with caution, since the midpointis a fictitious, idealised
price, and, once we account for trading costs (spread-crossing),
profitability is more elusive.

¢ Optimised execution in dark pools via censored exploration
(Ganchev et al 2010). We study the application of machine
learning to the problem of smart order routing across multiple
dark pools, in an effort to maximise fill rates. As in the first
case study, we are exogenously given the number of shares
to execute, but, unlike the first case, where the order was split
across time, here we must split it across venues. The basic chal-
lenge is that, for a given security at a given time, different dark
pools may have different available volumes, thus necessitating
an adaptive algorithm that can divide a large order up across
multiple pools to maximise the volume executed. We develop a
model that permits a different distribution of liquidity for each
venue, and a learning algorithm that estimates this model in
service of maximising the fraction of filled volume per step. A
key limitation of dark pool microstructure data is the presence
of censoring: if we place an order to buy (say) 1,000 shares,
and 500 are filled, we are certain only 500 were available; but
if all 1,000 shares are filled, it is possible that more shares were
available for trading. Our machine learning approach to this
problem adapts a classical method from statistics, known as
the Kaplan-Meier estimator, in combination with a greedy
optimisation algorithm.

Related work

While methods and models from machine learning are used in prac-
tice ubiquitously for trading problems, such efforts are typically pro-
prietary and there is little published empirical work. But the case
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studies we examine do have a number of theoretical counterparts
that we now summarise.

Algorithmic approaches to execution problems are fairly well
studied, and often apply methods from the stochastic control lit-
erature (Bertsimas and Lo 1998; Bouchaud et al 2002; Cont and
Kukanov 2013; Guéant et al 2012; Kharroubi and Pham 2010). The
aforementioned papers seek to solve problems similar to ours, ie,
to execute a certain number of shares over some fixed period as
cheaply as possible, but approach it from another direction. They
typically start with an assumption that the underlying “true” stock
price is generated by some known stochastic process. There is also a
known impact function that specifies how arriving liquidity demand
pushes market prices away from this true value. Having this infor-
mation, as well as time and volume constraints, it is then possi-
ble to compute the optimal strategy explicitly. This can be done
either in closed form or numerically (often using dynamic program-
ming, the basis of reinforcement learning). There are also interest-
ing game-theoretic variants of execution problems in the presence
of an arbitrageur (Moallemi et al 2012), and examinations of the
tension between exploration and exploitation (Park and van Roy
2012).

There is a similar theoretical dark pool literature. Laruelle et al
(2011) starts with the mathematical solution to the optimal alloca-
tion problem, and trading data comes in much later for calibration
purposes. There are also several extensions of our own dark pool
work (Ganchev et al 2010). In Agarwal et al (2010), our framework is
expanded to handle adversarial (ie, not independent and identically
distributed) scenarios. Several brokerage houses have implemented
our basic algorithm and improved upon it. For instance, JP Morgan
(2012) adds time to execution as a feature and updates historical
distributions more aggressively, and Maglaras et al (2012) aims to
solve essentially the same allocation/order routing problem but for
lit exchanges.

HIGH-FREQUENCY DATA FOR MACHINE LEARNING

The definition of high-frequency trading remains subjective, with-
out widespread consensus on the basic properties of the activities
it encompasses, including holding periods, order types (eg, pas-
sive versus aggressive) and strategies (momentum or reversion,
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directional or liquidity provision, etc). However, most of the more
technical treatments of HFT seem to agree that the data driving HFT
activity tends to be the most granular available. Typically this would
be microstructure data that details every order placed, every execu-
tion and every cancellation, directly from the exchanges, and that
thus permits the faithful reconstruction (at least for equities) of the
full limit order book, both historically and in real time.! Since such
data is typically among the raw inputs to an HFT system or strategy,
it is thus possible to have a sensible discussion of machine learning
applied to HFT without committing to an overly precise definition
of the latter; we can focus on the microstructure data and its uses in
machine learning.

Two of the greatest challenges posed by microstructure data are
its scale and interpretation. Regarding scale, a single day’s worth of
microstructure data on a highly liquid stock such as AAPL is mea-
sured in gigabytes. Storing this data historically for any meaningful
period and number of names requires both compression and signifi-
cant disk usage; even then, processing this data efficiently generally
requires streaming through the data by only uncompressing small
amounts at a time. But these are mere technological challenges; the
challenge of interpretation is the most significant. What systematic
signal or information, if any, is contained in microstructure data? In
the language of machine learning, what “features” or variables can
we extract from this extremely granular, lower-level data that would
be useful in building predictive models for the trading problem at
hand?

This question is not specific to machine learning for HFT, but
seems especially urgent there. Compared with more traditional,
long-standing sources of lower-frequency market and non-market
data, the meaning of microstructure data seems relatively opaque.
Daily opening and closing prices generally aggregate market activ-
ity and integrate information across many participants; a missed
earnings target or an analyst’s upgrade provide relatively clear sig-
nals about the performance of a particular stock or the opinion of a
particular individual. What interpretation can be given for a single
order placement in a massive stream of microstructure data, or to a
snapshot of an intraday order book, especially considering the fact
that any outstanding order can be cancelled by the submitting party
any time prior to execution??
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To offer an analogy, consider the now common application
of machine learning to problems in natural language processing
(NLP) and computer vision. Both of them remain very challeng-
ing domains. But, in NLP, it is at least clear that the basic unit of
meaning in the data is the word, which is how digital documents
are represented and processed. In contrast, digital images are repre-
sented at the pixel level, but this is certainly not the meaningful unit
of information in vision applications — objects are — but algorithmi-
cally extracting objects from images remains a difficult problem. In
microstructure data, the unit of meaning or actionable information is
even more difficult to identify, and is probably noisier than in other
machine learning domains. As we proceed through our case stud-
ies, proposals will be examined for useful features extracted from
microstructure data, but we emphasise that these are just propos-
als, almost certainly subject to improvement and replacement as the
field matures.

REINFORCEMENT LEARNING FOR OPTIMISED TRADE
EXECUTION
Our first case study examines the use of machine learning in per-
haps the most fundamental microstructure-based algorithmic trad-
ing problem, that of optimised execution. In its simplest form, the
problem is defined by a particular stock, say AAPL, a share volume
V and a time horizon or number of trading steps T.3 Our goal is to
buy* exactly V shares of the stock in question within T steps, while
minimising our expenditure (share prices) for doing so. We view this
problem from a purely agency or brokerage perspective: a client has
requested that we buy these shares on their behalf, and stated the
time period in which we must do so, and we would like to obtain the
best possible prices within these constraints. Any subsequent risk in
holding the resulting position of V shares is borne by the client.
Perhaps the first observation to make about this optimised trad-
ing problem is that any sensible approach to it will be state-based,
that is, will make trading and order placement decisions that are
conditioned on some appropriate notion of “state”. The most basic
representation of state would simply be pairs of numbers (v, t), indi-
cating both the volume v < V remaining to buy and the number of
steps t < T remaining to do so. To see how such a state representa-
tion might be useful in the context of microstructure data and order
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book reconstruction, if we are in a state where vis small and ¢ is large
(thus we have bought most of our target volume, but have most of
our time remaining), we might choose to place limit orders deep in
the buy book in the hope of obtaining lower prices for our remain-
ing shares. In contrast, if v is large and f is small, we are running
out of time and have most of our target volume still to buy, so we
should perhaps start crossing the spread and demanding immediate
liquidity to meet our target, at the expense of higher expenditures.
Intermediate states might dictate intermediate courses of action.

While it seems hard to imagine designing a good algorithm for
the problem without making use of this basic (v, t) state information,
we shall see that there are many other variables we might profitably
add to the state. Furthermore, mere choice of the state space does
not specify the details of how we should act or trade in each state,
and there are various ways we could go about doing so. One tra-
ditional approach would be to design a policy mapping states to
trading actions “by hand”. For instance, basic VWAP algorithms®
might compare their current state (v,¢) to a schedule of how much
volume they “should” have traded by step t according to historical
volume profiles for the stock in question, calibrated by the time of
day and perhaps other seasonalities. If v is such that we are “behind
schedule”, we would trade more aggressively, crossing the spread
more often, etc; if we are “ahead of schedule”, we would trade more
passively, sitting deeper in the book and hoping for price improve-
ments. Such comparisons would be made continuously or period-
ically, thus adjusting our behaviour dynamically according to the
historical schedule and currently prevailing trading conditions. In
contrast to this hand-designed approach, here we shall focus on an
entirely learning-based approach to developing VWAP-style execu-
tion algorithms, where we shall learn a state-conditioned trading
policy from historical data.

Reinforcement learning (RL), which has its roots in the older field
of control theory, is a branch of machine learning designed explicitly
for learning such dynamic state-based policies from data (Sutton
and Barto 1998). While the technical details are beyond our scope,
the primary elements of an RL application are as follows.

e The identification of a state space, whose elements represent
the variable conditions under which we shall choose actions.
In our case, we shall consider state spaces that include (v, t)
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as well as additional components or features capturing order
book state.

 Theidentification of a set of available actions from each state. In
our application, the actions will consist of placing a limit order
for all of our remaining volume at some varying price. Thus,
we shall only have a single outstanding order at any moment,
but will reposition that order in response to the current state.

¢ The identification of a model of the impact or influence our
actions have, in the form of execution probabilities under
states, learned from historical data.

e The identification of a reward or cost function indicating the
expected or average payout (which may be negative) for taking
a given action from a given state. In our application, the cost
for placing a limit order from a given state will be any eventual
expenditures from the (partial) execution of the order.

¢ Algorithms for learning an optimal policy, ie, a mapping from
states to actions, that minimises the empirical cost (expendi-
tures for purchasing the shares) on training data.

e Validation of the learned policy on test data by estimating its
out-of-sample performance (expenditures).

Note that a key difference between the RL framework and more
traditional predictive learning problems such as regression is that in
RL we learn directly how to act in the environment represented by
the state space, not simply predict target values.

We applied the RL methodology to the problem of optimised trade
execution (using the choices for states, actions, impact and rewards
indicated above) to microstructure data for several liquid stocks.
Full historical order book reconstruction was performed, with the
book simulation used both for computing expenditures in response
to order executions, and for computing various order book features
that we added to the basic (v, t) state, discussed below.

As a benchmark for evaluating our performance, we compare
resulting policies to one-shot submission strategies and demonstrate
the benefits of a more dynamic, multi-period, state-based learning
approach.® One-shot strategies place a single limit order at some
price p for the entire target volume V at the beginning of the trading
period, and leave it there without modification for all T steps. At
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the end of the trading period, if there is any remaining volume v, a
market order for the remaining shares is placed in order to reach the
target of V shares purchased. Thus, if we choose the buying price p to
be very low, putting an order deep in the buy book, we are effectively
committing ourselves to a market order at the end of the trading
period, since none of our order volume will be executed. If we choose
p to be very high, we cross the spread immediately and effectively
have a market order at the beginning of the trading period. Inter-
mediate choices for p seek a balance between these two extremes,
with perhaps some of our order being executed at improved prices
and the remaining liquidated as a market order at the end of trad-
ing. One-shot strategies can thus encompass a range of passive and
aggressive order placements, but, unlike the RL approach, do not
condition their behaviour on any notion of state. In the following
experiments, we describe the profitability of the policies learned by
RL to the optimal (expenditure minimising) one-shot strategy on
the training data; we then report the test set performance for both
approaches.

The potential promise of the learning approach is demonstrated
by Figure 5.1. In this figure, we compare the test set performance
of the optimal one-shot strategy with the policies learned by RL. To
normalise price differences across stocks, we measure performance
by implementation shortfall, namely, how much the average share
price paid is greater than the midpoint of the spread at the beginning
of the trading period; thus, lower values are better. In the figure, we
consider several values of the target volume and the period over
which trading takes place, as well as both a coarser and a finer choice
for how many discrete values we divide these quantities into in
our state-space representation (v,¢). In every case we see that the
performance of the RL policies is significantly better than the optimal
one-shot. We sensibly see that trading costs are higher overall for the
higher target volumes and shorter trading periods. We also see that
finer-grained discretisation improves RL performance, an indicator
that we have enough data to avoid overfitting from fragmenting our
data across too large a state space.

Aside from the promising performance of the RL approach, it is
instructive to visualise the details of the actual policies learned, and
is possible to do so in such a small, two-dimensional state represen-
tation. Figure 5.2 shows examples of learned policies, where on the
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Figure 5.1 Test set performance for optimal one-shot (black bars,
leftmost of each triple) and RL policies (grey and white bars, middle and
rightmost of each triple) on stocks (a) AMZN, (b) NVDA and (c) QCOM,
as measured by implementation shortfall (trading costs)
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The x-axis labels indicate the target volume to buy and the trading period, while
the legends indicate the resolution of discretisation in the RL state space for v
(target volume divided into I levels, from lowest to highest) and ¢ (trading divided
into T discrete steps, equally spaced throughout the trading period).

x- and y-axes we indicate the state (v, ¢) discretised into eight levels
each for both the number of trading steps remaining and the inven-
tory (number of shares) left to purchase, and on the z-axis we plot
the action learned by RL training relative to the top of the buy book
(ask). Thus, action A corresponds to positioning our buy order for
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Figure 5.2 Sample policies learned by RL
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The state (v, t) is indicated on the x- and y-axes as discrete levels of inventory
remaining v and number of trading steps or time remaining t. Actions indicate
how far into or across the spread to reposition the order for the remaining volume.
Smaller x and y indices indicate lower values for the features. (a) AMZN; (b) NVDA;
(c) QCOM.

the remaining shares at the bid plus A. Negative A are orders placed
down in the buy book, while positive A enters or crosses the spread.

The learned policies are broadly quite sensible in the manner dis-
cussed earlier: when inventory is high and time is running out, we
cross the spread more aggressively; when inventory is low and most
of our time remains, we seek price improvement. But the numeri-
cal details of this broad landscape vary from stock to stock, and in
our view this is the real value of machine learning in microstructure
applications: not in discovering “surprising” strategies per se, but
in using large amounts of data to optimise, on a per-stock basis, the
fine-grained details of improved performance, in this case for exe-
cution. We also note that all of the learned policies choose to enter
or cross the spread in all states (positive A), but this is likely to be
an artefact of the relatively large target volumes and short trading
periods we have chosen for such high-liquidity stocks; for smaller
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volumes, longer periods and lower liquidity, we should expect to
see some states in which we place limit orders that sit far down in
the order book.

So far we have made minimal use of microstructure information
and order book reconstruction, which has been limited to determin-
ing execution prices and order book evolution. But the opportunity
and challenge of machine learning typically involves the search for
improved features or state variables that allow the learned policy
to condition on more information and thus improve performance.
What are natural order book-based state variables we might add
to (v, t) in this quest? While the possibilities are manyfold, here we
list some plausible choices for features that might be relevant to the
optimised execution problem.

e Bid-ask spread: a positive value indicating the current dif-
ference between the bid and ask prices in the current order
books.

¢ Bid-ask volume imbalance: a signed quantity indicating the
number of shares at the bid minus the number of shares at the
ask in the current order books.

¢ Signed transaction volume: a signed quantity indicating the
number of shares bought in the last 15 seconds minus the
number of shares sold in the last 15 seconds.

e Immediate market order cost: the cost we would pay for
purchasing our remaining shares immediately with a market
order.

All of the features above were normalised in a standard fashion by
subtracting their means, dividing by their standard deviations and
time-averaging over a recent interval. In order to obtain a finite state
space, features were discretised into bins in multiples of standard
deviation units. Experiments can also be performed using continu-
ous features and a parametric model representation, but are beyond
the scope of this chapter.

Along with our original state variables (v,t), the features above
provide a rich language for dynamically conditioning our order
placement on potentially relevant properties of the order book. For
instance, for our problem of minimising our expenditure for pur-
chasing shares, perhaps a small spread combined with a strongly
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Table 5.1 Reduction in implementation shortfall obtained by adding
features to (v, t)

Reduction in

Feature(s) added trading cost (%)
Bid—ask spread 7.97
Bid—ask volume imbalance 0.13
Signed transaction volume 2.81
Immediate market order revenue 4.26
Spread + signed volume + immediate cost 12.85

negative signed transaction volume would indicate selling pres-
sure (sellers crossing the spread and buyer filling in the resulting
gaps with fresh orders). In such a state, depending on our inven-
tory and time remaining, we might wish to be more passive in our
order placement, sitting deeper in the buy book in the hopes of price
improvements.

We ran a series of similar train-test experiments using the RL
methodology on our original state (v,t), augmented with various
subsets of the order book features described above. The results are
summarised in Table 5.1, which shows, for each of the features
described above, the percentage reduction in trading cost (imple-
mentation shortfall) obtained by adding that feature to our original
(v, t) state space. Three of the four features yield significant improve-
ments, with only bid-ask volume imbalance not seeming especially
useful. The final row of the table shows the percentage improvement
obtained by adding all three of these informative features, which
together improve the (v, t) state by almost 13%.”

It is again informative to examine not only performance, but also
what has been learned. This is clearly more difficult to visualise
and summarise in a five-dimensional state space, but we can get
some intuition by projecting the policies learned onto subsets of two
features. Like Figure 5.2, Figure 5.3 shows a visualisation plotting
a pair of feature values, discretised into a small number of levels,
against the action learned for that pair of values, except now we are
averaging across the other three features. Despite this projection or
averaging, we can still see that sensible, intuitive policies are being
learned. For instance, we see that we place more aggressive (spread-
crossing) actions whenever the spread is large or the immediate cost
of purchasing our remaining shares is low. In the first case, larger

103



HIGH-FREQUENCY TRADING

Figure 5.3 Sample policies learned by RL for five-feature state space
consisting of (v, t) and three additional order book features, projected
onto the features of spread size and immediate cost to purchase
remaining shares
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Smaller x and y indices indicate lower values for the features. (a) AMZN; (b) NVDA;
(c) QCOM.

spreads simply force us to be more aggressive to initiate executions;
in the second, a bargain is available. When both conditions hold
simultaneously, we bid most aggressively of all.

PREDICTING PRICE MOVEMENT FROM ORDER BOOK STATE

The case study in the previous section demonstrated the poten-
tial of machine learning approaches to problems of pure execu-
tion: we considered a highly constrained and stylised problem of
reducing trading costs (in this case, as measured by implementation
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shortfall), and showed that machine learning methodology could
provide important tools for such efforts.

It is of course natural to ask whether similar methodology can be
fruitfully applied to the problem of generating profitable state-based
models for trading using microstructure features. In other words,
rather than seeking to reduce costs for executing a given trade, we
would like to learn models that themselves profitably decide when
to trade (that is, under what conditions in a given state space) and
how to trade (that is, in which direction and with what orders), for
Alpha generation purposes. Conceptually (only), we can divide this
effort into two components.

1. The development of features that permit the reliable prediction
of directional price movements from certain states. By “reli-
able” we do not mean high accuracy, but just enough that our
profitable trades outweigh our unprofitable ones.

2. The development of learning algorithms for execution that
capture this predictability or Alpha at sufficiently low trading
costs.

In other words, in contrast to the previous section, we must first find
profitable predictive signals, and then hope they are not erased by
trading costs. As we shall see, the former goal is relatively attainable,
while the latter is relatively difficult.

It is worth noting that for optimised execution in the previous
section, we did not consider many features that directly captured
recent directional movements in execution prices; this is because the
problem considered there exogenously imposed a trading need, and
specified the direction and volume, so momentum signals were less
important than those capturing potential trading costs. For Alpha
generation, however, directional movement may be considerably
more important. We thus conducted experiments employing the
following features.

e Bid-ask spread: similar to that used in the previous section.

e Price: a feature measuring the recent directional movement of
executed prices.

e Smart price: a variation on mid-price, where the average of
the bid and ask prices is weighted according to the inverse of
their volume.
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e Trade sign: a feature measuring whether buyers or sellers
crossed the spread more frequently in recent executions.

e Bid-ask volume imbalance: similar to that used in the previ-
ous section.

¢ Signed transaction volume: similar to that used in the previ-
ous section.

We have thus preserved (variants of) most of the features from our
optimised execution study, and added features that capture direc-
tional movement of both executed prices, buying/selling pressure
and bid—ask midpoint movement. As before, all features are nor-
malised in a standard way by subtracting the historical mean value
and expressing the value in units of historical standard deviations.

In order to effect the aforementioned separation between predict-
ing directional movement, and capturing such movements in a cost-
efficient way, in our first study we make deliberately optimistic exe-
cution assumptions that isolate the potential promise of machine
learning. More specifically, we consider just two idealised classes of
actions available to the learning algorithm: buying one share at the
bid-ask midpoint and holding the position for ¢ seconds, at which
point we sell the position, again at the midpoint; and the opposite
action, where we sell at the midpoint and buy ¢ seconds later. In the
first set of experiments, we considered a short period of t = 10 sec-
onds. It is important to note that under the assumption of midpoint
executions, one of the two actions is always profitable: buying and
selling after t seconds if the midpoint increased, and the reverse
action if it decreased. This will no longer hold when we consider
more realistic execution assumptions.

The methodology can now be summarised as follows.

1. Order book reconstruction on historical data was performed
for each of 19 names.®

2. Ateach trading opportunity, the current state (the value of the
six microstructure features described above) was computed,
and the profit or loss of both actions (buy then sell, sell then
buy) was tabulated via order book simulation to compute the
midpoint movement.

3. Learning was performed for each name using all of 2008 as the
training data. For each state x in the state space, the cumulative
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Figure 5.4 Correlations between feature values and learned policies
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For each of the six features and nineteen policies, we project the policy onto
just the single feature compute the correlation between the feature value and
action learned (+1 for buying, —1 for selling). Feature indexes are in the order
bid—ask spread, price, smart price, trade sign, bid—ask volume imbalance, signed
transaction volume.

payout for both actions across all visits to x in the train-
ing period was computed. Learning then resulted in a pol-
icy, 71, mapping states to action, where 77 (x) is defined to be
whichever action yielded the greatest training set profitability
in state x.

4. Testing of the learned policy for each name was performed
using all 2009 data. For each test set visit to state x, we took the
action 17 (x) prescribed by the learned policy, and computed
the overall 2009 profitability of this policy.

Perhaps the two most important findings of this study are that
learning consistently produces policies that are profitable on the test
set, and that (as in the optimised execution study), those policies
are broadly similar across stocks. Regarding the first finding, for all
19 names the test set profitability of learning was positive. Regard-
ing the second finding, while visualisation of the learned policies
over a six-dimensional state space is not feasible, we can project the
policies onto each individual feature and ask what the relationship
is between the feature and the action learned. In Figure 5.4, for each
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Figure 5.5 Comparison of test set profitability across 19 names for
learning with all six features (black bars, identical in each subplot)
versus learning with only a single feature (grey bars).
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Figure 5.5 Continued.
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of the 19 policies and each of the six state features, we plot a bar
showing the correlation between the value of the feature and the
action learned, where by convention we assign a value of +1 to buy-
ing then selling, and —1 to selling then buying. For virtually every
feature, we see that the sign of the correlation is the same across all
policies. As in the optimised execution study, however, the numer-
ical values of the correlations vary significantly across names. This
again speaks to the strengths of a learning approach: the policies are
all “sensible” and qualitatively similar, but the learning performs
significant quantitative optimisation on a name-specific basis.

What have these consistent policies learned? Figure 5.4 reveals
that, broadly speaking, we have learned momentum-based strate-
gies: for instance, for each of the four features that contain direc-
tional information (price, smart price, trade sign, bid—ask volume
imbalance and signed transaction volume), higher values of the fea-
ture (which all indicate rising execution prices, rising midpoints or
buying pressure in the form of spread-crossing) are accompanied
by greater frequency of buying in the learned policies. We should
emphasise, however, that projecting the policies onto single features
does not do justice to the subtleties of learning regarding interac-
tions between the features. As just one simple example, if instead
of conditioning on a single directional feature having a high value,
we condition on several of them having high values, the correlation
with buying becomes considerably stronger than for any isolated
feature.

As we did for optimised execution, it is also instructive to exam-
ine which features are more or less informative or predictive of prof-
itability. In Figure 5.5 there is a subplot for each of the six features.
The black bars are identical in all six subplots, and show the test set
profitability of the policies learned for each of the 19 names when all
six features are used. The grey bars in each subplot show the test set
profitability for each of the 19 names when only the corresponding
single feature is used. General observations include the following.

» Profitability is usually better using all six features than any
single feature.

e Smart price appears to be the best single feature, and often is
slightly better than using all features together, a sign of mild
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Figure 5.6 Learned policies depend strongly on timescale
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For learning with a single feature measuring the recent directional price move, we
show the test set profitability of buying in each possible state for varying holding
periods. (a) Short term: momentum. (b) Medium term: reversion. (c) Long term:
directional drift. (d) Long term, corrected: reversion.

overfitting in training. However, for one stock using all fea-
tures is considerably better, and for another doing so avoids a
significant loss from using smart price only.

e Spread appears to be the less useful single feature, but does
enjoy significant solo profitability on a handful of names.

While we see a consistent momentum relationship between fea-
tures and actions across names, the picture changes when we explore
different holding periods. Figure 5.6 illustrates how learning dis-
covers different models depending on the holding period. We have
selected a single “well-behaved” stock (DELL)? and plot the value
of training set profits or losses of a buy order in each possible state
of a single-feature state space representing recent price changes.!
Note that, since executions take place at the midpoints, the values
for selling are exactly opposite those shown. We show the values for
several different holding periods.
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Over very short holding periods (Figure 5.6(a)), we see fairly con-
sistent momentum behaviour: for time periods of milliseconds to
seconds, price moves tend to continue. At these time scales, buy-
ing is (most) profitable when the recent price movements have
been (strongly) upwards, and unprofitable when the price has been
falling. This echoes the consistency of learned multi-feature momen-
tum strategies described above, which were all at short holding peri-
ods. Features that capture directional moves are positively correlated
with future returns: increasing prices, preponderance of buy trades
and higher volumes in the buy book all forecast higher returns in
the immediate future.

We see a different pattern, however, when examining longer hold-
ing periods (dozens of seconds to several minutes). At those horizons
(Figure 5.6(b)), our learner discovers reversion strategies: buying is
now profitable under recent downward price movements, and sell-
ing is profitable after upward price movements. Again, these results
are broadly consistent across names and related features.

A desirable property of a “good fit” in statistical learning is to have
models with features that partition the variable that they aim to pre-
dict into distinct categories. Our short-term momentum and longer-
term reversion strategies exhibit such behaviour: in the momentum
setting, the highest values of past returns predict the highest future
returns, and the most negative past returns imply the most negative
subsequent realizations (and vice versa for reversion). Furthermore,
this relationship is monotonic, with past returns near zero corre-
sponding to near-zero future returns: in parts (a) and (b) of Figure 5.6
the outermost bars show the largest values. We lose this desirable
monotonicity, however, when extending our holding period even
further: in the range of 30 minutes to several hours, conditioning on
any of our chosen variables no longer separates future positive and
negative returns. Instead, we end up just capturing the overall price
movement or directional drift; as demonstrated in Figure 5.6(c), the
expected value of a buy action has the same (negative) sign across
all states, and is distributed more uniformly, being roughly equal to
the (negative) price change over the entire training period (divided
by the number of training episodes). Thus, since the price went
down over the course of the training period, we simply learn to
sell in every state, which defeats the purpose of learning a dynamic
state-dependent strategy.
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The discussion so far highlights the two aspects that must be con-
sidered when applying machine learning to high-frequency data:
the nature of the underlying price formation process, and the role
and limitations of the learning algorithm itself. In the first category,
a clean picture of market mechanics emerges: when we look at price
evolution over milliseconds to seconds, we are likely to witness large
marketable orders interacting with the order book, creating direc-
tional pressure. Over several minutes, we see the flip side of this
process: when liquidity demanders push prices too far from their
equilibrium state, reversion follows. On even longer time scales,
our microstructure-based variables are less informative, apparently
losing their explanatory power.

On the one hand, it may be tempting to simply conclude that for
longer horizons microstructure features are immaterial to the price
formation process. On the other hand, longer holding periods are
of a particular interest to us. As we have pointed out in our HFT
profitability study (Kulesza et al 2010), there is a tension between
shorter holding periods and the ability to overcome trading costs
(specifically, the bid—ask spread). While the direction of price moves
is easiest to forecast over the very short intervals, the magnitude
of these predictions, and thus the margin that allows trading costs
to be covered, grows with holding periods (notice that the scale
of the y-axis, which measures profitability, is 100 times larger in
Figure 5.6(b) than in Figure 5.6(a)). Ideally, we would like to find
some compromise horizon, which is long enough to allow prices to
evolve sufficiently in order to beat the spread, but short enough for
microstructure features to be informative of directional movements.

In order to reduce the influence of any long-term directional price
drift, we can adjust the learning algorithm to account for it. Instead
of evaluating the total profit per share or return from a buy action
in a given state, we monitor the relative profitability of buying in
that state versus buying in every possible state. For example, sup-
pose a buy action in some state x yields 0.03¢ per trade on aver-
age; while that number is positive, suppose always buying (that
is, in every state) generates 0.07¢ per trade on average (presum-
ably because the price went up over the course of the entire period),
therefore making state s relatively less advantageous for buying. We
would then assign —0. 04 = 0.03 - 0. 07 as the value of buying in that
state. Conversely, there may be a state—action pair that has negative
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payout associated with it over the training period, but if this action
is even more unprofitable when averaged across all states (again,
presumably due to a long-term price drift), this state-action pair
is be assigned a positive value. Conceptually, such adjustment for
average value allows us to filter out the price trend and home in on
microstructure aspects, which also makes learned policies perform
more robustly out-of-sample. Empirically, resulting learned policies
recover the desired symmetry, where if one extremal state learns to
buy, the opposite extremal state learns to sell: notice the transforma-
tion from Figure 5.6(c) to Figure 5.6(d), where we once again witness
mean reversion.

While we clearly see patterns in the short-term price forma-
tion process and are demonstratively successful in identifying
state variables that help predict future returns, profiting from this
predictability is far from trivial. It should be clear from the figures
in this section that the magnitude of our predictions is in fractions
of a cent, whereas the tightest spread in liquid US stocks is 1¢. So
the results should in no way be interpreted as a recipe for profitabil-
ity: even if all the features we enumerate here are true predictors of
future returns, and even if all of them line up just right for maxi-
mum profit margins, we still cannot justify trading aggressively and
paying the bid—-ask spread, since the magnitude of predictability is
not sufficient to cover transaction costs.!!

So what can be done? We see essentially three possibilities. First,
as we have suggested earlier, we could hold our positions longer, so
that price changes are larger than spreads, giving us higher margins.
However, as we have seen, the longer the holding period, the less
directly informative market microstructure aspects seem to become,
making prediction more difficult. Second, we could trade with limit
orders, hoping to avoid paying the spread. This is definitely a fruit-
ful direction, where we can jointly estimate future returns and the
probability of getting filled, which then must be weighed against
adverse selection (probability of executing only when predictions
turn out to be wrong). This is a much harder problem, well outside
of the scope of this chapter. And finally, a third option is to find or
design better features that will bring about greater predictability,
sufficient to overcome transaction costs.

It should be clear by now that the overarching theme of these
suggested directions is that the machine learning approach does not
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offer any easy paths to profitability. Markets are competitive, and
finding sources of true profitability is extremely difficult. That being
said, what we have covered in this section is a framework for how to
look for sources of potential profits in a principled way (by defining
state spaces, examining potential features and their interplay, using
training-test set methodology, imposing sensible value functions,
etc) that should be a part of the arsenal of a quantitative professional,
so that we can at least discuss these problems in a common language.

MACHINE LEARNING FOR SMART ORDER ROUTING IN DARK
POOLS

The studies we have examined so far apply machine learning to
trading problems arising in relatively long-standing exchanges (the
open limit order book instantiation of a continuous double auction),
where microstructure data has been available for some time. Fur-
thermore, this data is rich, showing the orders and executions for
essentially all market participants, comprising multiple order types,
etc, and is also extremely voluminous. In this sense these exchanges
and data are ideal test beds for machine learning for trading, since
(as we have seen) they permit the creation of rich feature spaces for
state-based learning approaches.

But machine learning methodology is also applicable to emerging
exchanges, with new mechanisms and with data that is considerably
less rich and voluminous. For our final case study, we describe the
use of a machine learning approach to the problem of smart order
routing (SOR) in dark pools. Whereas our first study investigated
reinforcement learning for the problem of dividing a specified trade
across time, here we examine learning to divide a specified trade
across venues, that is, multiple competing dark pools, each offering
potentially different liquidity profiles. Before describing this prob-
lem in greater detail, we provide some basic background on dark
pools and their trade execution mechanism.

Dark pools were originally conceived as a venue for trades in
which liquidity is of greater concern than price improvement; for
instance, trades whose volume is sufficiently high that executing in
the standard lit limit order exchanges (even across time and venues)
would result in unacceptably high trading costs and market impact.
For such trades, we would be quite satisfied to pay the “current
price”, say, as measured by the bid—ask midpoint, as long as there
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were sufficient liquidity to do so. The hope is that dark pools can
perhaps match such large-volume counterparties away from the lit
exchanges.

In the simplest form of dark pool mechanism, orders simply spec-
ify the desired volume for a given name, and the direction of trade
(buy or sell); no prices are specified. Orders are queued on their
respective side of the market in order of their arrival, with the old-
est orders at the front of the queue. Any time there is liquidity on
both sides of the market, execution occurs. For instance, suppose at
a given instant the buy queue is empty, and the sell queue consists
of two orders, for 1,000 and 250 shares. If a new buy order arrives for
1600 shares, it will immediately be executed for 1,250 shares against
the outstanding sell orders, after which the buy queue will contain
the order for the residual 350 shares and the sell queue will be empty.
A subsequent arrival of a buy order for 500 shares, followed by a sell
order for 1,000 shares, will result in an empty buy queue and the
residual sell order for 150 (= 1,000 — 350 — 500) shares. Thus, at any
instant, either one or both of the buy and sell queues will be empty,
since incoming orders either are added to the end of the non-empty
queue, or cause immediate execution with the other side. In this
sense, all orders are “market” orders, in that they express a demand
for immediate liquidity.

At what prices do the executions take place, since orders do not
specify prices? As per the aforementioned motivation of liquidity
over price (improvement), in general dark pool executions take place
at the prevailing prices in the corresponding lit (limit order) market
for the stock in question, eg, at the midpoint of the bid—ask spread,
as measured by the National Best Bid and Offer (NBBO). Thus, while
dark pools operate separately and independently of the lit markets,
their prices are strongly tied to those lit markets.

From a data and machine learning perspective, there are two cru-
cial differences between dark pools and their lit market counterparts.

(i) Unlike the microstructure data for the lit markets, in dark pools
we have access only to our own order and execution data,
rather than the entire trading population. Thus, the rich fea-
tures measuring market activity, buying and selling pressure,
liquidity imbalances, etc, that we exploited in earlier sections
(see pp. 96ff and 104ff) are no longer available.
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(ii) Upon submitting an order to a dark pool, all we learn is
whether our order has been (partially) executed, nothow much
liquidity might have been available had we asked for more. For
instance, suppose we submit an order for 10,000 shares. If we
learn that 5,000 shares of it have been executed, then we know
that only 5,000 shares were present on the other side. How-
ever, if all 10,000 shares have been executed, then any number
larger than 10,000 might have been available. More formally,
if we submit an order for V shares and S shares are available,
we learn only the value min(V,S), not S. In statistics this is
known as “censoring”. We shall see that the machine learn-
ing approach we take to order routing in dark pools explicitly
accounts for censored data.

These two differences mean that dark pools provide us with con-
siderably less information not only about the activity of other mar-
ket participants, but even about the liquidity present for our own
trades. Nevertheless, we shall see there is still a sensible and effective
machine learning approach.

We are now ready to define the SOR problem more mathemati-
cally. We assume that there are n separate dark pools available (at
the time of writing n > 30 in the US alone), and we assume that
these pools may offer different liquidity profiles for a given stock;
forinstance, one pool may be better at reliably executing small orders
quickly, while another may have a higher probability of executing
large orders. We model these liquidity profiles by probability distri-
butions over available shares. More precisely, let P; be a probability
distribution over the non-negative integers. We assume that upon
submitting an order for V; shares to pool i, a random value S; is
drawn according to P;; S; models the shares available on the other
side of the market of our trade (selling if we are buying, buying if
we are selling) at the moment of submission. Thus, as per the afore-
mentioned mechanism, min(V;, S;) shares will be executed. The SOR
problem can now be formalised as follows: given an overall target
volume V we would like to (say) buy, how should we divide V into
submissions V7, ..., V, to the n dark pools such that P, Vi=Vand
we maximise the (expected) number of shares we execute?

As an illustration of how a real distribution of liquidity looks,
consider Figure 5.7, which shows submission and execution data
for a large brokerage to a US dark pool for the stock DELL. Each
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Figure 5.7 Sample submission and execution data for DELL from a
large brokerage firm orders to a US dark pool
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The x-axis shows the volume submitted, and the y-axis the volume executed in a
short period following submission. Points on the diagonal correspond to censored
observations. (a) All orders. (b) Small orders.

point in the scatter plot corresponds to a single order submitted.
The x value is the volume submitted to the pool, while the y value
is the volume executed in the pool in a short period of time (on the
order of several seconds). All points lie below the diagonal y = x,
since we never executed more than we submitted. Part (a) shows all
submission data, while part (b) zooms in on only the smaller orders
submitted. We see that while the larger orders (say, those exceeding
20,000 shares) rarely result in even partial execution, the smaller
orders (part (b), 1,000 shares and smaller) routinely result in partial
or full execution. It is empirically the case that such distributions
will indeed differ from one dark pool to another, thus suggesting
that effective solutions to the SOR problem will divide their orders
across pools in an asymmetric fashion.

In our formalisation of the SOR problem, if we have complete
knowledge and descriptions of the distributions P;, it can be shown
(Ganchev et al 2010) that there is a straightforward algorithmic solu-
tion. In order to maximise the fraction of our V shares that are
executed, we should determine the allocations V; in the follow-
ing fashion. Processing the shares sequentially (strictly for the pur-
poses of the algorithm), we allocate the conceptually “first” share
to whichever pool has the highest probability of executing a single
share. Then, inductively, if we have already determined a partial
allocation of the V shares, we should allocate our “next” share to
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whichever pool has the highest marginal probability of executing
that share, conditioned on the allocation made so far. In this manner
we process all V shares and determine the resulting allocation V; for
each pool i. We shall refer to this algorithm for making allocations
under known P; the “greedy” allocation algorithm. It can be shown
that the greedy allocation algorithm is an optimal solution to the
SOR problem, in that it maximises the expected number of shares
executed in a single round of submissions to the 7 pools. Note that
if the submission of our V shares across the pools results in partial
executions, leaving us with V' < V shares remaining, we can always
repeat the process, resubmitting the V' shares in the allocations given
by the greedy algorithm.

The learning problem for SOR arises from the fact that we do not
have knowledge of the distributions P;, and must learn (approxi-
mations to) them from only our own, censored order and execution
data, ie, data of the form visualised in Figure 5.7. We have developed
an overall learning algorithm for the dark pool SOR problem that
learns an optimal submission strategy over a sequence of submitted
volumes to the 1 venues. The details of this algorithm are beyond
the scope of the chapter, but can be summarised as follows.

1. Thealgorithm maintains, for each venue i, an approximation p;
to the unknown liquidity distribution P;. This approximation
is learned exclusively from the algorithm’s own order sub-
mission and execution data to that venue. Initially, before any
orders have been submitted, all of the approximations P; have
some default form.

2. Since the execution data is censored by our own submitted
volume, we cannot employ basic statistical methods for esti-
mating distributions from observed frequencies. Instead, we
use the Kaplan-Meier estimator (sometimes also known as
the product limit estimator), which is the maximum likeli-
hood estimator for censored data (Ganchev et al 2010). Further-
more, since empirically the execution data frequently exhibits
instances in which no submitted shares are executed, com-
bined with occasional executions of large volumes (Figure 5.7),
we adapt this estimator for a parametric model for the P; that
has the form of a power law with a separate parameter for zero
shares.

119



HIGH-FREQUENCY TRADING

3. For each desired volume V to execute, the algorithm simply
behaves as if its current approximate distributions P; are in
fact the true liquidity distributions, and chooses the alloca-
tions V; according to the greedy algorithm applied to the p:.
Each submitted allocation V; then results in an observed vol-
ume executed (which could be anything from zero shares to a
censored observation of V; shares).

4. With this fresh execution data, the estimated distributions IA’i
can be updated, and the process repeated for the next target
volume.

In other words, the algorithm can be viewed as a simple repeated
loop of optimisation followed by re-estimation: our current distribu-
tional estimates are inputs to the greedy optimisation, which deter-
mines allocations, which result in executions, which allow us to
estimate improved distributions. It is possible, under some simple
assumptions, to prove that this algorithm will rapidly converge to
the optimal submission strategy for the unknown true distributions
P;. Furthermore, the algorithm is computationally very simple and
efficient, and variants of it have been implemented in a number of
brokerage firms.

Some experimental validation of the algorithm is provided in Fig-
ure 5.8, showing simulations derived using the censored execution
data for four US dark pools. Each subplot shows the evolution of
our learning algorithm’s performance on a series of submitted allo-
cations for a given ticker to the pools. The x-axis measures time or
trials for the algorithm, ie, the value of x is the number of rounds
of submitted volumes so far. The y-axis measures the total fraction
of the submitted volume that was executed across the four pools;
higher values are thus better. The grey curves for each name show
the performance of our learning algorithm. In each case perfor-
mance improves rapidly with additional rounds of allocations, as
the estimates P; become better approximations to the true P;.

As always in machine learning, it is important to compare our
algorithm’s performance to some sensible benchmarks and alter-
natives. The least challenging comparison is shown by the dashed
black line in each figure, which represents the expected fraction
of shares executed if we simply divide every volume V equally
amongst the pools: there is no learning, and no accounting for the
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Figure 5.8 Performance curves for our learning algorithm (grey curve)
and a simple adaptive heuristic (black curve), against benchmarks
measuring uniform allocations (dashed black line) and ideal allocations
(dashed grey line).
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asymmetries that exist among the venues. Fortunately, we see the
learning approach quickly surpasses this sanity-check benchmark.

A more challenging benchmark is the dashed grey line in each
subplot, which shows the expected fraction of shares executed when
performing allocations using the greedy algorithm applied to the
true distributions P;. This is the best performance we could possibly
hope to achieve, and we see that our learning algorithm approaches
this ideal quickly for each stock.

Finally, we compare the learning algorithm’s performance to a
simple adaptive algorithm that is a “poor man’s” form of learning.
Rather than maintaining estimates of the complete liquidity distribu-
tion for each venue i, it simply maintains a single numerical weight
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w;, and allocates V proportional to the w;. If a submission to venue i
results in any shares being executed, w; is increased; otherwise it is
decreased. We see that, while in some cases this algorithm can also
approach the true optimal, in other cases it asymptotes at a subop-
timal value, and in others it seems to outright diverge from opti-
mality. In each case our learning algorithm outperforms this simple
heuristic.

CONCLUSION

We have presented both the opportunities and challenges of a
machine learning approach to HFT and market microstructure and
considered problems of both pure execution, over both time and
venues, and predicting directional movements in search of prof-
itability. These were illustrated via three detailed empirical case
studies. In closing, we wish to emphasise a few “lessons learned”,
common to all of the cases examined.

e Machine learning provides no easy paths to profitability
or improved execution, but does provide a powerful and
principled framework for trading optimisation via historical
data.

¢ Atleast for complex trading problems, we are not believers in
the use of machine learning as a black box, or in the discov-
ery of “surprising” strategies via its application. In each of the
case studies, the result of learning made broad economic and
market sense in light of the trading problem considered. How-
ever, the numerical optimisation of these qualitative strategies
is where the real power lies.

e Throughout, we have emphasised the importance and subtlety
of feature design and engineering to the success of the machine
learning approach. Learning will never succeed without infor-
mative features, and may even fail with them if they are not
expressed or optimised properly.

o All kinds of other fine-tuning and engineering are required to
obtain the best results, such as the development of learning
methods that correct for directional drift (see pages 104ff).

Perhaps the most important overarching implication is that there
will always be a “human in the loop” in machine learning applica-
tions to HFT (or any other long-term effort to apply machine learning
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to a challenging, changing domain). But, applied tastefully and with
care, the approach can be powerful and scalable, and is arguably
necessary in the presence of microstructure data of such enormous
volume and complexity as confronts us today.

We thank Alex Kulesza warmly for his collaboration on the
research described in the section on “Predicting Price Movement
from the Order Book State”, and to Frank Corrao for his valuable
help on many of our collaborative projects.

1 Various types of hidden, iceberg and other order types can limit the complete reconstruction,
but do not alter the fundamental picture we describe here.

2 A fair estimate would be that over 90% of placed orders are cancelled.

3 For simplicity, we shall assume a discrete-time model in which time is divided into a
finite number of equally spaced trading opportunities. It is straightforward conceptually
to generalise to continuous-time models.

4 The case of selling is symmetric.

5 VWAP denotes volume weighted average price, which refers to both the benchmark of trading
shares at the market average per share over a specified time period, and algorithms which
attempt to achieve or approximate this benchmark.

6 In principle, we might compare our learning approach to state-of-the-art execution algo-
rithms, such as the aforementioned VWAP algorithms used by major brokerages. But doing
50 obscures the benefits of a principled learning approach in comparison to the extensive
hand-tuning and optimisation in industrial VWAP algorithms, and the latter may also make
use of exotic order types, multiple exchanges and other mechanisms outside of our basic
learning framework. In practice, a combination of learning and hand-tuning is likely to be
most effective.

7 Note that the improvement from combining features is slightly less than the sum of their
individual improvements, since there may be redundancy in the information provided by the
features.

8 Tickers of names examined are AAPL, ADBE, AMGN, AMZN, BIIB, CELG, COST, CSCO,
DELL, EBAY, ESRX, GILD, GOOG, INTC, MSFT, ORCL, QCOM, SCHW and YHOO.

9 The results we describe for DELL, however, do generalise consistently across names.

1

o

As usual, the feature is normalised by subtracting the mean and binned by standard devia-
tions, so —3 means the recent price change is three standard deviations below its historical
mean, and +3 means it is three standard deviations above.

1

jury

We have documented this tension empirically at great length in Kulesza et al (2010).
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A “Big Data” Study of Microstructural
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Factors such as electronic exchanges, decimalisation of stock prices
and automated order slicing created an explosion in the amount of
financial data in the first decade of the 21st century, and the number
of trades per day has been increasing dramatically. A large portion
of the trades happen near opening or closing of the trading day,
which creates very high rates of trading activities in short bursts.
This high data rate and even higher burst rate make it difficult to
understand the market. Many researchers have argued that a better
understanding of high-frequency trading, and better regulations,
might have prevented events such as the US flash crash of May 6,
2010 (Easley et al 2011b; Menkveld and Yueshen 2013). However,
academic researchers and government regulators typically lack the
computing resources and the software tools to work with large vol-
umes of data from high-frequency markets. We believe that the exist-
ing investments in high-performance computing resources for sci-
ence could effectively analyse financial market data. In this chapter,
we use the concrete task of computing a leading indicator of market
volatility to demonstrate that a modest machine could analyse over
100 GB of futures contracts quickly.

Scientific research activities such as the Large Hadron Collider!
and climate modelling? produce and analyse petabytes (10'° bytes)
of data. The data rates from such activities are in fact multiple
orders of magnitude higher than those from financial markets. In
most cases, scientists are conducting their analysis tasks not with
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expensive data warehousing systems, but using open-source soft-
ware tools augmented with specialised data structures and analysis
algorithms (Bethel and Childs 2012; Shoshani and Rotem 2010). We
view this departure from the reliance on the monolithic database
management system as the core feature of the “big data” movement
(Lynch 2008; Manyika et al 2011). In this chapter, we provide a brief
overview of three key pieces of the technology:

1. an efficient file format for organising the market data,

2. aset of techniques to compute the early-warning indicator and
the volatility measure, and

3. a strategy to parallelise the computation and take advantage
of the many cores available on most computers.

To demonstrate the effectiveness of these techniques, we process a
large data set (details are given in the following section) to compute a
popular liquidity indicator called volume-synchronised probability
of informed trading (VPIN) (Bethel et 2l 2012; Easley et al 1996). When
the values of VPIN exceed a certain threshold, say two standard devi-
ations larger than the average, we declare a “VPIN event”. Within
a time window immediately following a VPIN event, we expect the
market to be more volatile than usual. To verify this hypothesis, we
compute a realised volatility measure called the maximum inter-
mediate return (MIR), which essentially measures the largest range
of price fluctuation in a time window (Easley et al 2012a; Lopez
de Prado 2012). We compare the MIR values following VPIN events
against the average MIR value sampled at random time periods. If
the MIR following a VPIN event is larger than the average MIR of
random time periods, we say the event is a “true positive”; if the
MIR following a VPIN event is equal to or less than the average MIR
of random time periods, the VPIN event is said to be a “false posi-
tive”. The functions for computing VPIN and MIR are controlled by
six parameters, including the size of the support window for com-
puting VPIN and the time window for computing MIR. With an
efficient program, we can explore the parameter space to determine
the optimal parameter choices and minimise the false positive rates.

TEST DATA
In our work, we use a comprehensive set of liquid futures trading
data to illustrate the techniques to be introduced. More specifically,

126



A “BIG DATA” STUDY OF MICROSTRUCTURAL VOLATILITY IN FUTURES MARKETS

we use 67 months of tick data of the 94 most liquid futures contracts
traded on all asset classes. The data comes to us in the form of 94
comma separated values (CSV) files, one for each futures contract
traded. The source of our data is TickWrite, a data vendor that nor-
malises the data into a common structure after acquiring it directly
from the relevant exchanges. The total size of all CSV files is about
140 GB. They contain about three billion trades spanning the begin-
ning of January 2007 to the end of July 2012. Five of the most heav-
ily traded futures contracts each have more than 100 million trades
during the 67-month period. The most heavily traded futures, E-
mini S&P 500 futures (ES), has about 500 million trades, involving
a total of about three billion contracts. A complete list of the futures
contracts is available in the report by Wu et al (2013).

HDF5 FILE FORMAT

To improve the efficiency of data handling, we convert the CSV files
into HDF5 files (HDF Group 2011). In a published study on a similar
task of computing VPIN values on a month of stock trades, it took
142 seconds using the CSV file, while it only took 0.4 seconds using
HDFS5 (Bethel et al 2012). One reason for this gain in efficiency is that
HDFS5 stores data in binary form, which requires less storage space.
For the data used in this work, the total size of all HDF5 files was
about 41 GB, about 29% of the total size of all CSV files. Smaller files
take less time to read in to memory.

After reading the content of a CSV file, the program has to convert
the ASCII strings into numerical values, which requires additional
processing time. In contrast, the values read from a HDF5 file can be
used directly by the application code without further interpretation.
Furthermore, HDF5 allows for better organisation of the data. For
example, in a CSV file, the year, month and day information has to be
repeated in each row. Such repetition can be avoided with HDF5, by
better organisation of the data records. Better organised data can also
make locating certain data records more efficient in some analysis
scenarios.

The advantages of using HDF5 to store financial data were noted
by Bethel ef al (2012). Some commercially available software, includ-
ing StratBox (from PuppetMaster Trading), stores its data as HDF5
files.> Additional details on how this work uses HDF5 are given in
Wu et al (2013).
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VOLUME-SYNCHRONISED PROBABILITY OF INFORMED
TRADING

VPIN measures the average order flow imbalance in a market
(Abad and Yagiie 2012; Easley et al 2011b). It takes into account the
imbalance of buyer-initiated and seller-initiated orders and, more
generally, the imbalance between buying and selling pressure. This
difference is important, because not all buying pressure is the result
of an excess of buy-initiated orders. Based on a probabilistic model
of information imbalance, Easley et al (1996, 2011b) have developed a
set of elegant formulas for computing VPIN. Here we briefly outline
the key computation steps.

Bars

Many standard statistical techniques for data analysis require some
uniformity in data. However, the real-world financial trading data
arrives atirregular intervals. Common strategies to work around this
problem are to take uniform samples or group the data into uniform
bins (At-Sahalia et al 2005). The VPIN computation generally starts
with a set of bins called “bars”. There are two commonly used types
of bars: time bars and volume bars. Each time bar spans the same
duration and each volume bar contains the same volume of trades
(Easley et al 2011a, 2012a). In this work, we choose the volume bars
because they adapt better to temporal bursts in trading (Easley et al
2011b).

Each bar is treated as a single trade in the rest of the computation
steps. For this purpose, the bar needs to have a nominal price. In the
research literature, it is common for the price of the last trade in the
bar to be taken as the nominal price of the bar. We refer to this as
the closing price. There are other convenient ways of constructing
the nominal prices. For example, Wu et al (2013) explored the option
of using the average price, the median price, the volume weighted
average price and the volume weighted median price. The cost of
computing the closing prices is minimal. The cost of computing the
average prices and the weighted averages is essentially one pass
through the data, while the cost of computing the median prices and
the weighted median prices is much higher (Wu et al 2013, Figure 2).

Volume classification
The computation of VPIN needs to determine directions of trades,
as buyer-initiated or seller-initiated, or simply as a “buy” or a “sell”
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(Easley et al 1996; Lee and Ready 1991). The most popular method
used in the market microstructure literature is the tick rule (Lee and
Ready 1991). This method relies on the sequential order of trades.
However, due to high-frequency trading, there are many trades with
the same time stamps. In addition, the time stamps on trades exe-
cuted by multiple matching engines may not be synchronised to the
precision used to record the time stamps. For these reasons, we use
the bulk volume classification (BVC) method instead (Chakrabarty
et al 2012; Easley et al 2012a,b).

BVC assigns a fraction of the volume as “buy” and the remainder
as “sell”, based on the normalised sequential price change (Easley
et al 2012b). Given a sequence of volume bars with prices, Py, Py, .. .,
the sequential price changes are 61 = P; — Py, 62 = P, — Py, and so
on. Let "0}) denote the buy volume for bar j, and v; be the volume of
the bar, we compute v}’ from v; as follows (Easley et al 2012b)

oj

0P = q-Z(E) 6.1)

where Z is the cumulative distribution function of either the normal
distribution or the Student t-distribution. The parameter ¢ is the
standard deviation of the sequential price changes. The rest of the
volume in the bar is considered as sells: v} = v; — v}’.

The expression J;/¢ is a way to normalise the price changes.
A common practice is to subtract the average price change before
dividing by the standard deviation. However, when working with
high-frequency data, the average price change is much smaller than
the standard deviation. Following the recommendation from earlier
publications (Easley et al 2012a,b), our BVC implementation always
uses zero as the average. The free parameter we need to choose here
is the distribution used for BVC (Table 6.1).

Buckets
After the volume classification, the bars are further aggregated into
larger bins known as “buckets”. Typically, a fixed number of bars go
into a bucket. Within a relatively wide range of choices, the number
of bars in a bucket has little influence on the final value of VPIN.
Therefore, we follow the recommendation from published literature
and fix the number of bars in a bucket at 30 (Easley ef al 2012a).

To compute VPIN, each bucket needs to record the total volume
of trades in all bars in the bucket and the total volume of buys. Let
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V; denote the total volume of the ith bucket, and V}’ denote the total
buys in the same bucket. The VPIN value is given by
S VP - Vel

2V
The authors of VPIN suggest using the same number of buckets for
the same trading instrument. We parametrise the number of buckets

VPIN =

as follows.

Let 8 be the number of buckets per day, and let A be the average
daily volume of a futures contract (or an equity). The volume of
a bar is [A/(30B) 1, where the operator [-] is the ceiling operator
that computes the smallest integer not less than the operand. This
ensures each bar has a whole unit of the trading instrument under
consideration and prevents us from dividing the trades into tiny
pieces when working with infrequently traded instruments. We then
aggregate 30 such bars into a bucket. In our tests, we choose S to be
between 50 and 1,000 (Table 6.1).

The number of buckets used for computing VPIN is determined
by another parameter, called the support for VPIN, o, which is mea-
sured in days. The number of buckets used is 0. In our tests, o
varies from 0.25 to 2 (Table 6.1).

Cumulative distribution function

The value of VPIN is between 0 and 1. Normally, it would be close
to 0. When it is high, we can declare a VPIN event. Generally, the
VPIN values span different ranges for different trading instruments.
Therefore, it is impossible to define a simple threshold on VPIN
values in order to judge whether a particular VPIN value is high or
not. Instead, we normalise the VPIN values as follows (Easley et al
2011a). Assume the VPIN values follow the normal distribution, and
denote their average as (1 and their standard deviation as ¢. Then its
cumulative distribution function (CDF) can be expressed as

CDE(x) = %[1 + erf <xf_2£>]

where erf is the error function. We declare a VPIN event whenever
the CDF value is larger than a threshold 7. After this transforma-
tion, the same threshold T could be used on a variety of trading
instruments (Easley et al 2011b, 2012a). The value T has a simple
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interpretation. Assuming all VPIN values follow the normal distri-
bution, if the CDF value is greater than 0.99, then the VPIN value is
larger than 99% of all values. In our tests, we assume VPIN follows
a truncated lognormal distribution (Wu et al 2013).

MAXIMUM INTERMEDIATE RETURN

When the CDF of a VPIN value is above a given threshold T, we
declare a VPIN event, and expect the volatility immediately follow-
ing the event to be higher than usual. Our next task is to select a
measure to quantify the volatility (Shiller 1992), which will enable
us to discriminate a true event from a false event. In this work, we
assume all events have the same duration throughout the 67-month
period, and attempt to determine this event duration through a set
of empirical measurements to be discussed later (see pages 133ff).
To measure volatility, we use the MIR (Easley et al 2012a; Lépez
de Prado 2012), defined next.

Many of the well-known volatility measures are based on the
realised return over the entire duration of an event (Amihud et al
1990; Andersen and Bollerslev 1998; Shiller 1992). However, these
measures are not appropriate for events like the US “flash crash” of
May 6, 2010, which is generally considered to be a liquidity crisis,
where VPIN might be effectively used (Bethel et al 2012; Easley et al
2011b, 2012a; Kirilenko ef al 2010). During the flash crash, the return
from the official beginning of the crisis (14h32) to the end of the
session (16h15) was only —0.5%. However, during the same period,
prices had an intermediate collapse of over —6%. The intermediate
return is a much better indicator of trouble than the official return
of the entire period.

Given prices of N trades, P;, the intermediate return between
tradesjand k (j < k) is

Rji = I;f - 62)
We call a pair of trades j* and k* sentinels if they maximise the
intermediate returns

(j*,k*) = arg max
0<j<k<N

Py
B 1‘ (6.3)
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The maximum intermediate return is the intermediate return of the
sentinels
P
MR = — —1 (6.4)
Pjs

The straightforward approach to computing MIR would use a
double nested loop to evaluate Equation 6.3. If we take the event
duration to be a day, then for many futures contracts an event dura-
tion would include millions of trades. Therefore, the double loop for
evaluating Equation 6.3 would need to compute trillions of different
pairs of intermediate returns R; j, requiring a very significant amount
of computer time. We could significantly reduce the amount of com-
putation by using the prices of buckets or bars instead of individual
trades, because there are fewer buckets or bars. However, because
the buckets and bars are aggregates of many trades, using them will
miss the actual maximum intermediate return in most cases.

To compute the exact MIR quickly, we employ two strategies.
The first is to have each volume bar carry the maximum price and
the minimum price of trades in the bar along with their positions
in the list of trades. The second strategy is to replace the double
loop algorithm for computing MIR with a recursive procedure. The
details of this procedure are given in Wu et al (2013).

PARALLELISATION

The process of computing VPIN and MIR for each futures contract
can proceed independently. For example, computing VPIN values
on ES does not require any information from any other futures con-
tracts. This allows us to run a number of parallel tasks, one for each
contract instruments. This parallelisation strategy is often referred to
as the “task parallelism” in high-performance computing literature
(Hager and Wellein 2010; Kumar et al 1994).

Since different contract instruments have wildly different number
of trades (for example, the heaviest traded futures, ES, has 478 mil-
lion trades, while the lightest traded futures, MW, has only 33 thou-
sand trades), each parallel task may require very different amounts
of computer time. To minimise the time spent on the parallel job,
we need to ensure the tasks assigned to each parallel process com-
plete in the same amount of time. In our case, the computer time
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Table 6.1 Parameters to control the computation of VPIN and MIR

Description Choices to consider

1 Nominal price of a bar Closing, average, weighted average,
median, weighted median

B Buckets per day 50, 100, 200, 500, 1,000

o  Support window (days) 0.25,0.5,1, 2

n  Event duration (days) 0.1,0.25,0.5, 1

v Parameter for BVC Normal distribution or Student
t-distribution with v = 0.1, 0.25, 1, 10

T  Threshold for CDF of 0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99,

VPIN 0.999

The six parameter choices form 16,000 different combinations. When any
of them are not specified, the following default values are used: ™ =
closing, 8 = 200, o = 1, n = 1, normal distribution for BVC, T = 0.99.

for each task is a linear function of the number of trades for the con-
tract instrument; we choose to assign the instrument with the largest
number of trades first.

To show that a modest computer is needed to complete the com-
putational task we have chosen, we decided to use a common work-
station with many cores. Our parallel implementation uses POSIX
threads to use the different cores (Hager and Wellein 2010; Lewis and
Berg 1998). The parallel processes share a common task list, which
holds the list of contract instruments. When a process finishes its
assigned task, it takes the next available task from this shared list.

EXPERIMENTAL EVALUATION

In this section, we report the time needed to compute VPIN and MIR
of the 94 most active futures contracts. Our main goal is to evaluate
the efficiency of the new computational procedure described above.
Following the timing discussion, we also discuss how to choose the
VPIN parameters to minimise the false positive rates.

Table 6.1 lists the six parameters, together with a brief description
and the choices to consider. Altogether, there are 16,000 different
parameter combinations specified in this table.

We conducted our tests using an IBM DataPlex machine located
at the National Energy Research Supercomputing Center (NERSC)*
The HDF?S files are stored on the global scratch space shared by
all NERSC machines. This file system is heavily used and the read
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Figure 6.1 A breakdown of time (in seconds) spent in major steps of
the C++ program
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The volume bars are constructed with their closing prices as their nominal prices.
The time to compute MIR includes the time to compute the MIR values of 10,000
random events.

speed from a single node is fairly close to what can be expected from
a stand-alone workstation. For example, the average read time for
ES (about 5.7 GB) is 50.4 s, which gives an average reading speed of
about 113 MB/s.

To understand where the computer time is spent in our program,
we measure the time used by the key functions. In Figure 6.1, we
show four such functions: reading the data from the HDF?5 file into
memory; constructing the volume bars; computing the VPIN values
(including forming the buckets); and computing the MIR values.
Overall, the time required to read the data into memory dominates
the total execution time.> The next largest amount of time is spent on
constructing the volume bars. In this case, we are using the closing
price as the nominal price of the bar; therefore, the time to form
the bars is relatively small. Had we used the median price or the
weighted median price, the time to form the volume bars would be
longer.

The time needed to compute VPINs and MIRs are about the same
in all five cases. Because the data spans the same number of days
and trading records from each day is divided into the same number
of bars and buckets, there are the same number of buckets and bars
for each futures contract. Since the same number of buckets is used
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to compute the VPIN for each contract, the procedure for computing
each VPIN value costs the same. Since there are the same number
of buckets for each of these futures contracts in Figure 6.1, the same
number of VPIN values are computed. Therefore, the total time for
computing VPIN should be the same. The computation of a MIR
value operates on the same number of bars; thus, it should cost the
same. Since there are different numbers of VPIN events, we compute
different numbers of MIR values and might expect the time to com-
pute MIR to be different. Indeed, there are differences. However, the
differences are small because the number of random events used as
references, 10,000, is much larger than the numbers of VPIN events
detected.

The test job that runs over all 16,000 combinations listed in
Table 6.1 on all 94 futures contracts took 19 hours 26 minutes and
41 seconds using a 32-core computer node and about 74 GB of mem-
ory. In this case, we read the input data into memory once and
repeated the different combinations of parameters without reading
the data again. This reduces the input/output (I/O) time and makes
it much more efficient to try different combinations. The average
time to compute VPIN, detect VPIN events and compute the false
positive rates is 1.49 seconds on a single CPU core

32 X (19 hours + 26 minutes + 41 seconds)
16,000 x 94

A PyTHON version of this program that stores bars and buckets in an
SQLite database took more than 12 hours to complete one parameter
combination on ES, while our program took about 55 seconds on
the same machine. Our program is about 785 times faster than the
PyrHON program. Note that the 55 seconds used by our program is
mostly spent on reading the input file (around 48 seconds). In real-
time operations, the computational procedure will directly receive
the latest trading records over a high-speed network. In this case,
we do not need to spend any time on disk I/O and the in-memory
operations can proceed at the same speed as in the larger tests where
around 1.5 seconds are enough to process 67 months of data. Thus,
we believe it is plausible to compute VPIN and detect VPIN events
in real-time during trading.

For each parameter combination in Table 6.1, we compute the false
positive rates for each of the 94 futures contracts and then record the
unweighted average. Figure 6.2 shows the average false positive

= 1.49 seconds
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Figure 6.2 The average false positive rates of 94 futures contracts
under different VPIN parameter choices
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The 16,000 parameter choices are ordered according to their false positive rates.

Table 6.2 The 10 parameter combinations that produced the smallest
average false positive rates, x

11 B o u v T [0
Median 200 1 0.1 1 0.99 0.071
Weighted median 1,000 0.5 0.1 1 0.99 0.071
Weighted median 200 0.5 0.1 0.25 0.99 0.072
Weighted median 200 0.5 0.1 1 0.99 0.073
Median 200 1 0.1 10 0.99 0.073
Median 500 0.5 0.1 0.1 0.99 0.074
Median 200 1 0.1 Normal 0.99 0.074
Weighted median 200 1 0.1 1 0.99 0.074
Weighted median 200 1 0.25 1 0.99 0.074
Weighted average 200 1 0.1 1 0.99 0.075

rates of 16,000 different parameter combinations. The median value
of the false positive rates is about 0.2 (ie, 20%). There are 604 com-
binations with false positive rates & < 0.1, which indicate that there
are a large number of parameter choices that could work quite well.

Table 6.2 shows the 10 combinations that produced the lowest
average false positive rates. We observe that each of the 10 combina-
tions produces an average false positive rate of around 7%, which is
about one-third of the median value (around 20%) of all false positive
rates in our test.
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Figure 6.3 The average false positive rates of four different classes of
futures contracts under the 100 parameter combinations with the lowest
overall false positive rates
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The parameter combinations are ordered according to the increasing overall false
positive rates.

Among the ten best parameter combinations in Table 6.2, the
threshold T on CDF is always 0.99, the event duration 1 is 0.1 days in
nine out of ten cases, the number of buckets per day f is 200 in eight
cases, the support for computing VPIN 0 is one day in six cases,
the bulk volume classification parameter v is 1 in six cases, and the
weighted median is the preferred pricing method for volume bars
in five cases. We generally recommend these choices.

To understand how the parameter choices affect the different
classes of futures contracts, we plot in Figure 6.3 the average false
positive rates of the four largest classes of futures contracts: equity,
interest rates, energy and metal. The names of these futures contracts
are listed in Table 6.4. From Figure 6.3, we see that the four classes
form two groups. The equity and interest rates form one group with
their false positive rates between 3% and 4%, while energy and metal
form another group, with their false positive rates between 10 and
20%.

Table 6.3 shows the parameter combinations that minimises the
average false positive rates of the four classes of futures contracts
shown in Figure 6.3. From this table, we see that it is possible for
their average false positive rates to be much lower than 7%. For the
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Table 6.3 The best parameter choices for different classes of futures
contracts

L B o M v T «

Energy  Average 200 0.25 0.1 0.1 0.999 0.037
Weighted 100 0.25 0.1 0.1 0.999 0.058

average

Metal Weighted 100 0.25 0.1 0.25 0.999 0.025
median
Weighted 50 0.5 0.1 0.1 0.999 0.042
median

Equity Median 200 1 0.1 10 0.99 0.026
Weighted 1,000 1 0.5 0.25 0.99 0.027
median

Interest  Closing 500 2 0.1 1 0.98 0.003

rates
Average 50 1 0.1 0.25 0.99 0.008

Table 6.4 A brief description of four classes of futures contracts: equity,
interest rates, metal and energy

Metal Energy

Description Volume Description Volume
GC Gold Comex 62,875 CL Light Crude 165,208
HG Copper high grade 12,393 CO Brent Crude ICE 79,182
JA Platinum 51 GO Gasail 15,858
JG Gold 136 HO Heating oil #2 22,740
PA Palladium 1,160 NG Natural gas 50,847
PL Platinum 2,086 QG Natural gas E-mini 2,167
SV Silver 24,375 QM Crude oil E-mini 11,436
XG Gold mini-sized 3,223 WT WTI Crude 18,164
YS Silver mini-sized 1,434 XB RBOB Gasoline 17,575

The volume of trades over a 67-month period is given in thousands. A full
list is given in Wu et al (2013, Table 7).

Interest rates class, the lowest « is 0.3%. We see that most of the
cases in Table 6.3 have u = 0.1, which agrees with Table 6.2. For the
rest of the parameters, we again see two different groups. On the
choice of CDF threshold T, the group including equity and interest
rates prefers 0.99, while the group including meta and energy prefers
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Table 6.4 Continued.

Equity Interest rates

Description Volume Description Volume

BR Brazilian 5,582 AX Australian 10 yr 3,889
Bovespa futures bond

CF CAC 40 index 56,521 AY Australian 3 yr 3,159
futures bond

DA Dax futures 97,337 BL Euro-bobl 5 yr 27,228

DJ DJIA Futures 596 BN Euro-bund 10yr 53,292

EN Nikkei 225 Futures 26,729 BZ Euro-schatz2yr 16,136

ES S&P 500 E-mini 478,029 CB Canadian 10 yr 8,276

FT FTSE 100 index 54,259 ED Eurodollar 11,864

HlI  Hang-Seng 55,812 FV T-Note 5 yr 59,830
index futures

IB IBEX 35 16,791 GL Long gilt 16,353

Il FTSE MIB 16,775 JB Japanese 5,401

10 yr bond

KM KOSPI 200 46,121 KE Korean 3 yr 3,707

MD S&P 400 MidCap 42 ST Sterling 3 months 1,765

MG MSCI EAFE Mini 2,022 TS 10-year interest 41

rate swap

Ml S&P 400 28,266 TU T-Note 2 yr 24,912
MidCap E-mini

ND Nasdaq 100 788 TY T-Note 10 yr 95,793

NE Nikkei 225 Futures 8,519 UB Ultra T-Bond 9,341

NK Nikkei 225 Futures 6,048 UR Euribor 3 months 3,747

NQ Nasdaq 100 173,211 US T-Bond 30 yr 57,588

NZ New Zealand Dollar 3,809

PT S&P Canada 60 11,374

RL Russell 2000 9N

RM Russell 1000 Mini 418

SP S&P 500 6,142

SW Swiss Market Index 18,880

TP TOPIX 8,416

TW MSCI Taiwan 24,533

VH STOXX Europe 50 196

XP ASX SPI 200 16,716

XX EURO STOXX 50 80,299

YM Dow Jones E-mini 110,122

The volume of trades over a 67-month period is given in thousands. A full
list is given in Wu et al (2013, Table 7).
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0.999. On the choice of o, the value 1 minimises the false positive
rates for the first group, while the value 0.25 minimises the false
positive rates for the second group. Based on the observations from
Figure 6.3, we speculate that there are some fundamental differences
between the two groups and plan to study their differences in the
future.

CONCLUSION
In this study we set out to apply the HPC experience gathered over
decades by the National Laboratories on a set of data analysis tasks
on high-frequency market data. While some financial practitioners,
such as NANEX, use these techniques routinely, there are still rel-
atively few research publications on handling massive amounts of
financial data. By borrowing a few techniques from scientific appli-
cations, we are able to produce a program that is orders of magnitude
faster than the popular approaches for computing VPIN and MIR.
The key techniques used include more efficient data organisation,
more efficient data structures for computing VPIN, more efficient
algorithms for computing MIR and better use of computer resources
through parallelisation. We believe that these techniques are useful
to many data analysis challenges posed by today’s high-frequency
markets.

We implemented a popular liquidity metric known as VPIN on
a large investment universe of nearly 100 of the most liquid futures
contracts over all asset classes. With our software, we are able to
quickly examine 16,000 different parameter combinations for evalu-
ating the effectiveness of VPIN. Our results confirm that VPIN is
a strong predictor of liquidity-induced volatility, with false pos-
itive rates as low as 7% averaged over all futures contracts. The
parameter choices to achieve this performance are: pricing the vol-
ume bar with the median prices of the trades, 200 buckets per day,
30 bars per bucket, one-day support window for computing VPIN,
an event duration of 0.1 days, a bulk volume classification with Stu-
dent t-distribution with v = 0.1 and threshold for CDF of VPIN,
equal to 0.99. For different classes of futures contracts, it is possi-
ble to choose different parameters to achieve even lower false pos-
itive rates. On the class of interest-rates-related futures, we have
identified parameters that achieve an average false positive rate of
0.3%.
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Liquidity and Toxicity Contagion

David Easley; Marcos Lopez de Prado;

Maureen O’Hara
Cornell University; RCC at Harvard University; Cornell University

Legislative changes in the US (Regulation National Market System
(Reg NMS)) of 2005 and Europe (Markets in Financial Instruments
Directive (MiFID), in force since November 2007), preceded by sub-
stantial technological advances in computation and communication,
have revolutionised the financial markets. MiFID fosters greater
competition among brokers, with the objective of improving liquid-
ity, cohesion and depth in financial markets. Similarly, Reg NMS
encourages competitiveness among exchanges by allowing mar-
ket fragmentation. Cohesion across markets is recovered through
amechanism for the consolidation of individual orders processed in
multiple venues into a single best bid or offer price for the market as
a whole (the National Best Bid and Offer (NBBO)). Since the arrival
of trading in multiple markets, an “arms race” has developed for
the technology and quantitative methods that can squeeze out the
last cent of profitability when serving the demands of market par-
ticipants, hence the advent of high-frequency trading. Easley et al
(2011a) have argued that these changes are related to a number of
new trends in market microstructure.

One area where this competition is particularly intense is in lig-
uidity provision. In this new era of high-frequency trading, liquidity
is provided by computers executing adaptive (or machine learning)
algorithms. These algorithms operate both within and across mar-
kets, reflecting that market making is now often a dynamic process in
which bids are placed in one market and asks in another. Indeed, the
entire financial market has become a complex network that discovers
equilibrium prices by reconciling the actions taken by large numbers
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Figure 7.1 Implied pricing relationships of GEH2
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of agents interacting with each other. Exchanges operate very much
like modems, struggling to route massive numbers of independently
and asynchronously generated messages, both to their own order
books and to the order books of other venues.

One important implication of this process is that the dynamics
of order books are interrelated across multiple products. Figure 7.1
illustrates how, in order to decide the level at which to place a client’s
order on eurodollar short futures, Quantitative Brokers’ algorithms
analyse six different relationships in real time, searching for “hidden
liquidity” (liquidity that, although it is not displayed in that partic-
ular book, may be implied by the liquidity present in the related
books). Consequently, in order to operate on the first eight eurodol-
lar contracts, Quantitative Brokers monitors the liquidity conditions
for 278 contracts, 539 combos and 1917 edges (see Figure 7.2). This
level of sophistication was inconceivable, both technically and math-
ematically, at the turn of the twenty-first century, but it reflects the
new reality of how trading takes place in a high-frequency world.

The technology which interconnects markets allows informed
traders to search for liquidity around the globe. Liquidity providers
similarly provide liquidity across markets, responding rapidly to
changing conditions in one market by revising limit orders in that
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Figure 7.2 Complete relationship map
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278 contracts (dark dots), 539 combos (light dots) and 1917 edges (grey lines).
Source: Quantative Brokers from CME data, courtesy of Robert Aimgren.

market as well as in related markets. As a result, we expect to find
order flow from informed traders as well as order flow from lig-
uidity providers, influenced by informed order flow, moving across
markets. This order flow is called toxic order flow; it is persistently
imbalanced, as it arises from traders who are better informed about
future price movements than are the liquidity providers in the mar-
ket. If traders behave as we conjecture, then we should find evidence
that toxic order flow is propagated using the same channels that
sophisticated brokers use to place their clients” orders. That is, we
should observe contagion in toxic order flow across markets.

The idea that contagion occurs across markets is not new. Brunner-
meier and Pedersen (2005) theorised that predatory trading could
amplify contagion and price impact in related markets. This amplifi-
cation would not be driven by a correlation in economic fundamen-
tals or by information spillovers, but rather by the composition of the
holdings of large traders who must significantly reduce their posi-
tions. Carlin et al (2007) developed a model of how predatory trading
can lead to episodic liquidity crises and contagion. The approach we
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take in this chapter is related to these papers, but we begin from a
different point of view. We see contagion as the natural consequence
of market makers revising their orders in one market in response to
changing liquidity conditions in related markets.

In this chapter we build a simple, exploratory model of these con-
tagion effects and we estimate the parameters of the model to quan-
tify the impact of contagion across markets. The next section pro-
vides our dynamic model of the toxicity contagion process. Then
we give estimates of the parameters of the model to show that
toxicity contagion does in fact occur. The final section offers some
conclusions.

AN ORDER FLOW TOXICITY CONTAGION MODEL

We define order flow toxicity as the persistent arrival of imbalanced
order flow. Contagion occurs when the increase of toxicity in one
instrument presages an increase of toxicity in another instrument.
One source of contagion is market makers hedging their risk of
adverse selection in one instrument by taking liquidity in another,
with the hope that over time they will be able to unwind their
positions in both instruments at a profit. In this section we study
this source of the contagion dynamics of order flow (see Lopez
de Prado and Leinweber (2012) for a discussion of advanced hedging
methods).

Consider two related financial instruments, such as heating oil
and gasoline. These two commodities are the result of the chemical
process of cracking crude oil. Because the ratio of their outputs is
determined by the efficiency of an industrial process, their relative
supply can be modelled quantitatively. So it is only natural that a
sudden excess supply (selling pressure) in one contract will eventu-
ally result in selling pressure in the other contract. Market makers
are aware of that linkage and act accordingly. This intuition suggests
that the linkage across markets arises from an order flow imbalance
in one market leading to an order flow imbalance in another related
market. This linkage will, of course, result in prices being linked
across the two markets.!

We begin by examining pairs of contracts indexed by i = {1,2}. We
assume that there is an equilibrium relationship between (absolute)
order flow imbalance in one contract at some time and order flow
imbalance in the other contract at the same time. This relationship
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Figure 7.3 Rolling moving averages (of 750 observations) of order flow
imbalances for front-line futures contracts for RBOB Gasoline (XB) and
#2 Heating Oil (HO) for the period 2007-12

0.7
0.6
0.5

0.4

Abs(Ol)

0.3

0.2

0.1

0
Jan 2 Jan 2 Jan 2 Jan 2 Jan 2 Jan 2 Jan 2
2007 2008 2009 2010 2011 2012 2013

should occur whether we look in calendar time or in trade time.
Following the intuition in Easley et al (2012c), we focus on trade time,
as order flow imbalances are better behaved (statistically) in trade
time. The trade time approach provides an estimate of order flow
imbalance in a contract for each of the contract’s trade buckets; that
is, it provides a new estimate of order flow imbalance every time a
particular number of trades has occurred.? Applying this procedure
directly to each contract in any pair of contracts would result in
asynchronous updates in order flow imbalance.? To synchronise the
updates, we estimate order flow imbalance every 30 minutes for
each contract, looking back over a fixed number of trades in that
contract. This mix of calendar time and trade time results in order
flow imbalance estimates that update once every 30 minutes for each
contract.

We first consider a simple example of this relationship between
order flow imbalances for two contracts. Figure 7.3 provides a graph
of rolling moving averages (of 750 observations) of order flow imbal-
ances for front-line futures contracts for RBOB Gasoline (XB) and #2
Heating Oil (HO) for the period 2007-12. These two contracts have
mean order flow imbalances of 0.1765 for XB and 0.1715 for HO with
standard deviations of 0.1197 and 0.1183, respectively. Both series
are positively autocorrelated, with AR1 coefficients of 0.6345 and
0.6312, respectively. Figure 7.3 suggests that the two series are also
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Figure 7.4 Moving average simple correlations, using a window of
one-month, between the order imbalances for RBOB Gasoline (XB) and
#2 Heating Oil (HO) for the period 2007-12
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positively correlated. As a first step towards understanding these co-
movements we compute moving average simple correlations, using
a window of one month, between the order imbalances for these two
contracts. Figure 7.4 provides a graph of these moving average sim-
ple correlations for our two example contracts. It is apparent from
Figure 7.4 that these correlations are not constant. So, looking at an
average of these correlations over our sample period would be mis-
leading. In fact, Figure 7.4 suggests that there is a deeper, dynamic
structure here than can be revealed by simple correlations.

To capture this underlying relationship between order flow imbal-
ances we need a model of the dynamic relationship between them.
We begin by building a simple illustrative model of the dynamics,
which we then apply to various pairs of contracts.

Let Ol; + denote order flow imbalance in contracti at time T, where
T indexes the sequential observations of order imbalance. For the
technological reasons stated earlier, we shall posit that there is a
proportional, long-run relationship between the order imbalances
of two related instruments, such as heating oil and gasoline

OIi,T = KOI2,T (7.1)

where K is the constant of proportionality. In logarithmic form we
have oi;r = k + o0ipr, where the lower case indicates the natural
logarithm of the upper case variables.
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Even though there is a long-run relationship between these order
imbalances, they are subject to shocks and thus do not need to move
in lockstep. However, we expect that deviations from the equilib-
rium condition expressed in Equation 7.1 will be corrected over time,
and we analyse this correction process with a simple error-correction
model. Error-correction models are closely related to the concept
of cointegration (Almgren applied this latter concept in Chapter 3)
although they are not in general identical.*

When a shock occurs to the order flow imbalance in one con-
tract we do not expect order flow imbalance in the other contract
to immediately adjust to its long-run equilibrium level. Instead, we
expect it to adjust over trade time. As a simple model of a form
that the dynamics might take, we assume that the short-run, out-of-
equilibrium relationship between OI;  and Ol, + can be represented
as

oiy,r = Bo + P10yt +PB20lor—1 +&X1 0i1, 71 +&7 (7.2)

where &7 is an independent and identically distributed, mean-zero
shock. We also assume that this dynamical system has an equilib-
rium and that in the absence of shocks it converges to this equilib-
rium. For the dynamical system represented by Equation 7.2 at an
equilibrium (OIf, OLY), it must be that

oif = Bo + B10iy +B20i5 +; 0if (7.3)

which implies

<k BO B 1+ B 2 .x
oij = + oi
1 1-0; 1-0; 2
This determines the relationship between the parameters of our
dynamical system and those of the long-run relationship between

our two variables as

_ B
1-on (7.4)
Br+B2=1-0
To simplify the notation we define y = B1 + . The equilibrium
condition then implies that f, = y — B1 and &1 = 1 — y. Thus,

our dynamic equation can be rewritten as the following equation in
differences

Aoil,T = ﬁo + 31A Oizr-,— +y(oi2,T_1 — Oi1,1—_1) + &1 (7.5)
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where y(0ipr-1 —0i1r-1) is the “error-correction” term that, over
time, corrects cumulative hedging errors and ensures the conver-
gence of the order imbalances to a long-run equilibrium.

Before proceeding with the analysis it may be useful to note what
our system does or does not determine. We have a discrete-time,
dynamic system in two variables (the two order imbalances). The
dynamic system, Equation 7.2, provides only one equation for these
two variables. So we do not specify a full system determining the
two order imbalances. More precisely, if we know the values of the
two variables at time T — 1 and the shock in Equation 7.2, we have a
relationship between the two variables at time T, but not their actual
values. One way to interpret this is that there may be some process
driving one of the variables, say Ol r, and, given that process, we
know the other one, OI; ¢, evolves. Our assumption that there is a
long-run relationship between our two variables and that the error-
correction process converges to it imposes conditions on the driving
equation, which we do not need to specify for our analysis of the
relation between the two variables.

Note that stability of the system described by Equation 7.5 (ie, in
the absence of disturbances (A oiy r, £7), 0i1 converging to its equi-
librium level) requires y > 0. To see this, suppose that Aoir+ = 0,
&r = 0. Then

Aoiyr = Po + y(oizr-1 — 0i1,r-1)
Applying the equilibrium conditions leaves us with
Aoiyr = y(k + o0izr—1 —0i1,r-1)

where k + 0ip r—1 is the equilibrium value of oi; for observation T —1.
If

k + 012,7-71 - 011,771 >0

then oi; is less than its equilibrium level at T — 1, in which case
the error correction must compensate for the difference to ensure
convergence (ie, y must be positive). This has the important con-
sequence that, given our maintained stability hypothesis, a test of
significance on y should be one-tailed, with Hy: y < 0.

150



LIQUIDITY AND TOXICITY CONTAGION

Table 7.1 Front-contract energy commodity futures

Buffer
Symbol Description Roll Exchange size

CL Light CrudeNYMEX  *19 NYMEX 2296

HO Heating Oil #2 *27 NYMEX 321
NG Natural Gas 0 NYMEX 739
QG Natural Gas E-mini 0 NYMEX 28
QM Crude Qil E-mini *19 NYMEX 152
XB RBOB Gasoline *27 NYMEX 251

The six futures contracts under consideration are all traded on the New
York Mercantile Exchange (NYMEX). For each contract the buffer size is
one-fiftieth of the average daily activity in that contract for the period Jan-
uary 1, 2007, to February 4, 2013. An asterisk followed by an integer value
indicates that the roll was applied that number of days before expiration,
unless the volume shifted to the next serial contract before that day. A zero
value in the roll column indicates that the roll date was purely determined
by the transfer of volume from one contract to the next.

EMPIRICAL ANALYSIS

Our theoretical model provides a structure for the linkage between
markets through the adjustment of order flow imbalances. In this sec-
tion we fit the model to data to determine if the order flow adjustment
process is in fact consistent with our approach.

We studied the six front-line futures contracts listed in Table 7.1,
for the period January 1, 2007, to February 4, 2013. These are actively
traded products all trading on the same exchange (NYMEX). We
focused on a single US exchange so as to avoid the possibility of
introducing artificial lead—lag relationships resulting from the clocks
of different exchanges possibly not being well synchronised.

We used level 1 tick (trade-by-trade) data as provided by Globex.
First, we loaded the data into a database and generated a properly
rolled series for each instrument. Second, we computed the average
number of trades per session (ADT). Third, every 30 minutes we
generated a bucket containing the previous ADT/50 trades, ie, a
bucket equivalent to one-fiftieth of the average number of trades in
a session. Fourth, for each bucket we estimated the order imbalance,
using the bulk volume method introduced by Easley et al (2012a).
This method assigns a fraction of the trades in each bucket as buys or
sells, based on the price change from beginning to end of the bucket
relative to the distribution of price changes in the sample. Intuitively,
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if there is no price change over the bucket, then the trade is assumed
to be balanced, ie, half of the trades are buys and half are sells. If
prices increase, then the fraction assumed to be buys is greater than
one-half; how much greater depends on the magnitude of the price
increase relative to the distribution of price changes. Details for this
procedure and an evaluation of its accuracy are provided in Easley
et al (2012b).

The result of this procedure is that we create estimates of (abso-
lute) order imbalance, chronologically synchronised for each prod-
uct, timed at half and whole hours. Each order imbalance is based on
transactional buffers of comparable size (one-fiftieth of the respec-
tive average daily activity). If the order imbalance is zero for a
half-hour period in one contract in a pair, that data point must be
dropped, as we shall examine logs of order imbalances. This proce-
dure generates 15 pairs of order imbalance series. Summary statistics
about these pairs of order imbalances are provided in Table 7.2.

We estimated Equation 7.5 for each of the pairs of instruments
in Table 7.2, which yielded the results listed in Table 7.3. The esti-
mated residuals from a simple regression based on Equation 7.5
are not serially uncorrelated and homoscedastic. So we compute
the Newey—West heteroscedasticity- and autocorrelation consistent
(HAC) estimates of the regressors in order to determine their stat-
istical significance. Following Newey and West (1994), we apply a
Bartlett kernel on a number of lags equal to Int[4(n/ 100)2/9], where
n is the total number of observations.

The number of contemporaneous observations in our regressions
ranges between 49,144 and 66,187, depending on how much of
the daily activity between two products overlaps. The adjusted R-
squared value ranges between 0.1155 and 0.3065. All of the regres-
sions are statistically significant, as evidenced by the high values the
F-statistic of model significance. We also report the estimates of Bo,
By and ¥, which are statistically different from zero to any reason-
able critical level. In particular, y > 0, with values between 0.2308
and 0.5693.

The fact that y is statistically significant and positive is the evi-
dence we needed to conclude the existence of contagion. More for-
mally, our results indicate that order flow imbalances in our pairs
of contracts can be viewed as following an error-correction pro-
cess. Most importantly, order flow imbalances are related across
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Table 7.2 Summary statistics for order imbalances for our pairs of contracts, January 1, 2007 to February 4, 2013

Instr1 Instr2 Mean1 Mean2 SD1 SD2 Skew1 Skew2 Kurt2 Kurt1 AR1, AR1,
QG QM 0.1796 0.2068 0.1194 0.1172 0.3990 0.0822 2.1735 2.5735 0.4463 0.3289
QG XB 0.1805 0.1752 0.1192 0.1195 0.3747 0.5405 2.5349 2.5664 0.4168 0.6038
QG HO 0.1808 0.1710 0.1194 0.1182 0.3717 0.6187 2.7203 2.5548 0.4224 0.6084
QG NG 0.1796 0.1396 0.1193 0.1168 0.3962 1.0291 3.4511 25785 0.4415 0.7497
QG CL 0.1799 0.1917 0.1195 0.1164 0.3957 0.3120 2.3531 2.5638 0.4473 0.4512
QM XB 0.2061 0.1772 0.1172 0.1198 0.0929 0.5142 2.4893 2.1799 0.3502 0.6442
QM HO 0.2060 0.1728 0.1172 0.1185 0.0933 0.5934 2.6714 2.1806 0.3595 0.6515
QM NG 0.2062 0.1430 0.1172 0.1180 0.0928 0.9820 3.2929 2.1817 0.3731 0.7756
QMm CL 0.2061 0.1914 0.1173 0.1166 0.0934 0.3245 2.3654 2.1814 0.3880 0.5177
XB HO 0.1765 0.1715 0.1197 0.1183 0.5215 0.6119 2.7070 2.5003 0.6345 0.6312
XB NG 0.1765 0.1415 0.1196 0.1169 0.5240 1.0017 3.3811 2.5105 0.6341 0.7485
XB CL 0.1780 0.1911 0.1199 0.1163 0.5023 0.3237 2.3679 2.4683 0.6418 0.4711
HO NG 0.1729 0.1408 0.1185 0.1170 0.5919 1.0123 3.3981 2.6670 0.6408 0.7599
HO CL 0.1733 0.1913 0.1186 0.1163 0.5876 0.3239 2.3662 2.6588 0.6503 0.4840
NG CL 0.1443 0.1913 0.1183 0.1163 0.9596 0.3235 2.3720 3.2365 0.7733 0.4985

Columns show mean, standard deviation, skewness, kurtosis and the AR1 coefficient. The data is presented in pairs, because if the order
imbalance is zero for a half-hour period in one contract in a pair, that data point is dropped for the pair. This procedure generates fifteen
pairs of order imbalance series.
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Table 7.3 Results of Fitting the error correction model

Beta0 Betal Gamma
Instri Instr2 Obs  AdjR? F-value F-prob Beta0 Betal Gamma prob prob prob

QG QM 51151 0.1847 5795.1677 0.0000 -0.0115 0.1916 0.3683 0.0000 0.0000 0.0000
QG XB 49144 0.1155 3208.1384 0.0000 0.0790 0.1182 0.2308 0.0000 0.0000 0.0000
QG HO 50451 0.1189 3405.4949 0.0000 0.0867 0.1222 0.2346 0.0000 0.0000 0.0000
QG NG 51312 0.1431 4284.9100 0.0000 0.1461 0.2098 0.2549 0.0000 0.0000 0.0000
QG CL 51702 0.1554 4758.6063 0.0000 0.0454 0.1542 0.3056 0.0000 0.0000 0.0000
QM XB 60924 0.1822 6786.4844 0.0000 0.1222 0.2353 0.3585 0.0000 0.0000 0.0000
QM HO 62831 0.1861 7182.6699 0.0000 0.1325 0.2512 0.3601 0.0000 0.0000 0.0000
QM NG 63330 0.1358 4975.7936 0.0000 0.1679 0.1419 0.2747 0.0000 0.0000 0.0000
QM CL 66187 0.2969 13977.2348 0.0000 0.0853 0.4045 0.5016 0.0000 0.0000 0.0000
XB HO 61408 0.3010 13224.0926 0.0000 0.0180 0.3928 0.5591 0.0000 0.0000 0.0000
XB NG 60057 0.2058 7781.7165 0.0000 0.1103 0.2217 0.4125 0.0000 0.0000 0.0000
XB CL 61700 0.2934 12807.8561 0.0000 —-0.0874 0.3577 0.5549 0.0000 0.0000 0.0000
HO NG 61865 0.2095 8200.1635 0.0000 0.1063 0.2298 0.4178 0.0000 0.0000 0.0000
HO CL 63627 0.3065 14059.2175 0.0000 -0.1069 0.3991 0.5693 0.0000 0.0000 0.0000
NG CL 64186 0.1789 6991.2849 0.0000 —-0.1485 0.1887 0.3565 0.0000 0.0000 0.0000

Obs denotes the number of observations used in the error correction model that combines instruments 1 and 2. Adj R? is the adjusted R-squared
value, F-value is the statistic of the F-test, and F-prob is the associated probability. BetaO, Betal and Gamma are the regression coefficients. The
probabilities that BetaO and Beta1 are statistically different from zero are reported in the columns BetaO prob and Beta1 prob. The probability that
Gamma is statistically greater than zero is reported by Gamma prob. These probabilities are consistent with Newey—West HAC estimates.
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pairs of the contracts in our sample. The autoregressive coefficients
reported in Table 7.2 are well within the unit circle, providing evi-
dence that the series of the logarithms of order imbalances are sta-
tionary. Thus, although these series are not cointegrated, there is an
error-correction term that regulates the convergence to a long-run
equilibrium between the logarithms of the order imbalances.

We began our discussion arguing that market makers hedge their
risk of adverse selection. They do so by hedging their accumulated
inventories with offsetting positions in related instruments, such as
heating oil versus gasoline (XB-HO). A long inventory of XB may
be acquired by providing liquidity, but hedging a short position
in HO requires the taking of liquidity. This is the microstructural
mechanism that spreads toxicity across related products, which we
have called toxicity contagion. For this particular pair, ¥ ~ 0.56. This
is consistent with the presence of a long-run equilibrium between
the order imbalances of both products, only perturbed by short-
lived disturbances. It is precisely this error-correction mechanism,
empirically shown by y > 0, that is responsible for the contagion of
order flow toxicity.

Our results are not surprising, as market interconnectivity pro-
vides a venue for brokers as well as predators to search for hidden
liquidity globally. A consequence of these connections is that mar-
ket makers’ ability to diversify the risk of being adversely selected
by providing liquidity to a wide number of order books is limited.
Effective hedging against flow toxicity may thus require alternative
solutions, such as the one discussed in Easley et al (2011b).

CONCLUSION

Our analysis of toxicity contagion focused on energy commodities
because of the physical arbitrage nature of the relationship between
them. But our approach could be applied to other asset classes with
interrelated products and we would expect to find similar conclu-
sions. Toxicity contagion should occur across any related products
because of the actions of market makers and other market partici-
pants who trade across markets. In our analysis we focused on pairs
of products, but the analysis could also be extended to larger groups
of products.
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The toxicity contagion results in our study provide a caution
for researchers analysing order flow imbalance on a product-by-
product basis. We showed that there is an error-correction relation-
ship between order flow imbalances across related products. One
important consequence of this relationship is that there is informa-
tion in the order flow imbalance in one product about order flow
imbalance, and thus price changes, across related products.

This relationship between order flow imbalances across markets
has intriguing implications for both traders and regulators. Traders
seeking to minimise the cost of implementing any desired transac-
tion can better predict the impact of their orders on quotes if they
take into account order flow imbalance not only for the contract they
want to trade, but also for any related contracts. This is because, as
we have shown, there is feedback between related markets. Simi-
larly, regulators who are interested in predicting liquidity events in
one market can improve their predictions by taking into account not
only order flow imbalance in their own market, but also order flow
imbalances for any related contracts in other markets. Our particu-
lar model of the relationship between order flow imbalances across
contracts is only meant to be an exploratory model of this potentially
complex relationship. Applications to trading or regulation would
need more a complete analysis, but, as our results indicate, this is a
fruitful area for future research.

We thank Robert Almgren for allowing us to reproduce materials
owned by Quantitative Brokers.

1 We could examine linkages in order flow, in price or in price changes across markets. We
study order flows because they cause the price changes. Thus, studying order flows give us
an ability to understand a cause of price volatility.

2 Asanexample, we could compute the order imbalance after every 40,000 contracts are traded.
The 40,000 would be the “bucket size” and the imbalance we seek to estimate is the percentage
of those contracts initiated by buyers as opposed to those initiated by sellers. If the number
of buyer-initiated contracts where the same as the seller-initiated contracts, then there would
be zero imbalance.

3 This is because, while time is constant across all contracts, the volume traded is not. If we
calculate order imbalance every 40,000 contracts traded, then it is likely that one market will
be ahead of the other.

4 If there is a stationary linear combination of nonstationary random variables o0i; + and oiy r,
then the variables are said to be cointegrated (Granger 1981). Engle and Granger’s represen-
tation theorem (Engle and Granger 1987) states that cointegrated random variables accept an
error-correction representation, and error-correcting, integrated series accept a cointegration
representation. For more on the relationship between cointegration and error-correction mod-
els, see Alogoskoufis and Smith (1991). De Boef and Keele (2008) provide a discussion of the
use of error-correction models for stationary time series.
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Do Algorithmic Executions Leak
Information?

George Sofianos, Juanduan Xiang
Goldman Sachs Equity Execution Strats

Asset managers are concerned that the algorithms they use to exe-
cute their orders may leak information to predators. Predators are
traders who use this information to trade in the same direction as the
asset managers, increasing the asset managers’ trading costs. Asset
managers are particularly concerned about leaking information to
high-frequency trading (HFT) predators.

In this chapter, we develop and empirically test a framework for
evaluating whether algorithmic (“algo”) executions leak informa-
tion. Based on the Goldman Sachs Electronic Trading (GSET) algo
executions we tested, our main finding is that these algo executions
do not leak information that predators, including HFT predators,
can profitably exploit. The algos we tested, by slicing up large high-
Alpha orders into smaller orders and executing them over time,
make it expensive for predators to identify and profitably trade along
these orders.

In the next section, we define information leakage and distinguish
between good and bad information leakage. We next show how
bad information leakage increases execution shortfall and introduce
the BadMax approach for testing whether algos leak information to
predators. In the BadMax approach, we pretend to be BadMax, a
fictitious predator. As BadMax, we use historical data to back-test
whether BadMax can construct profitable predatory strategies. We
next describe the historical data we use in our back-tests and esti-
mate the BadMax gross and net Alpha for several BadMax predatory
strategies. In our back-tests we assume that BadMax can somehow
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Figure 8.1 Good and bad information leakage (hypothetical example)

Price over AlphaMax execution horizon (bp) e?d)n(n?;
sells

12

BadMax 6 ’\
Uiz XYZ price if  AlphaMaxbuy executions
2 AlphaMax did not buy  drive XYZ price up

0 0 lo 0 0
Open 10h00 11h00 12h00  13h00  14h00  15h00  Close

First Second Third Fourth Fifth Sixth
tranche tranche tranche tranche tranche tranche

identify GSET buy and sell algo executions. In practice, BadMax will
have a very hard time identifying GSET buy and sell algo executions
from the real-time publicly disseminated trade prices (“the Tape”).
We summarise our findings in the final section.

DEFINING INFORMATION LEAKAGE

Using AlphaMax, a fictitious trader, we define information leak-
age as follows: if other traders can reliably generate Alpha sig-
nals from AlphaMax’s order executions, AlphaMax’s executions leak
information.! AlphaMax executions leak information if they cause
the signal generated by other traders. This causality from AlphaMax
executions to the signal generated by other traders is the defining
feature of information leakage: if AlphaMax did not trade, other
traders would not generate this signal. In our empirical tests, we
use this causality to identify executions that may leak information.
But first we must distinguish between good and bad information
leakage.

In Figure 8.1, AlphaMax buys 60,000 shares XYZ in six tranches,
from 10h00 to 15h00. The AlphaMax “buy” executions increase the
price by 12 basis points (bp) and then the price reverts. Good infor-
mation leakage occurs when AlphaMax “buy” executions prompt
another trader, GoodMax, to sell. In Figure 8.1 at 15h00, GoodMax
expects the price will fall and immediately sells XYZ. GoodMax sells
while AlphaMax is buying. GoodMax, therefore, provides liquidity
to AlphaMax and reduces AlphaMax’s trading costs.>

Bad information leakage occurs when AlphaMax “buy” execu-
tions prompt another trader, BadMax, to buy. In Figure 8.1 at 10h00,
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BadMax expects the price will continue to increase and imme-
diately buys XYZ along with AlphaMax, increasing AlphaMax’s
trading costs. BadMax is a predator, using the Alpha signal cre-
ated by AlphaMax’s executions to capture Alpha at the expense of
AlphaMax.?

Figure 8.1 also illustrates the important causality that defines
information leakage. If AlphaMax did not try to buy 60,000 shares,
the XYZ price would have been flat from open to close and BadMax
would not have generated the signal to buy XYZ.

Our examination of information leakage focuses on BadMax and
bad information leakage. AlphaMax may leak information to Bad-
Max at any point in the order life cycle. Figure 8.2 traces the life
cycle of an algo order beginning with the AlphaMax portfolio man-
ager (PM) creating a parent order for 500,000 shares and ending with
executions of 100 shares reported to the Tape.

PMs, buy-side traders, algos, smart routers, execution venues
and the Tape may all leak information. PMs may leak information
through headcount turnover. An AlphaMax PM, for example, moves
to BadMax and replicates the AlphaMax investment strategy. Buy-
side traders may leak information when they shop orders with sev-
eral brokers. Algos may leak information by slicing large orders into
predictable patterns. Smart routers may leak information by repeat-
edly executing on the same venue. Exchanges may leak information
when they display limit orders.

In Figure 8.3, we use a sample of GSET algo orders to show that
the Alpha signal diminishes as orders move down the algo order
life cycle.* We first look at the beginning of the algo order life cycle,
at algo parent orders. Our sample includes 15,000 large algo parent
orders (more than 50,000 shares). On these large orders, the average
Alpha from arrival to same-day close is 29bp.> This 29bp Alpha is
the signal AlphaMax wants to protect and the signal BadMax wants
to identify.

We next look at the end of the algo order life cycle, at the execu-
tions reported to the Tape. Our sample has 15 million algo executions
and the average execution size is 153 shares. The average Alpha from
execution to same-day close is —3bp.® These 15 million executions
include the executions from the 15,000 large high-Alpha algo parent
orders. But they also include executions from many small low-Alpha
algo parent orders. Algos, by slicing large high-Alpha parent orders
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Figure 8.2 Order life cycle
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into small child orders and mixing them with small low-Alpha par-
ent orders, eliminate the Alpha signal at the end of the order life
cycle.
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Figure 8.3 The Alpha signal of algo orders
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GSET algo orders and executions, October 3—28, 2011; re-stitched parent orders
including both filled and non-filled shares.

One of the questions we try to answer in this chapter is whether
BadMax can identify large high-Alpha parent orders from clusters
of small child order executions at the end of the order life cycle.

AlphaMax may leak information to predators in three ways.

1. AlphaMax executions may leak information to predators
through the Tape. AlphaMax, for example, may leak infor-
mation by executing buy orders above the mid-quote (and
sell orders below the mid). By analysing the Tape, BadMax
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will observe that above-mid executions are usually followed
by a price increase. AlphaMax’s above-mid buy executions,
therefore, may trigger BadMax buy orders.” AlphaMax may
also leak information through the Tape by slicing large orders
into small orders and executing them in a predictable pat-
tern (eg, 150 shares every 15 seconds). By analysing the Tape,
BadMax may identify the pattern, anticipate AlphaMax large-
order executions and trade along. In both these examples, it is
the AlphaMax executions, and not the AlphaMax orders, that
leak information.?

2. AlphaMax orders may leak information to predators who ping.
BadMax, for example, may use small peg mid instant or cancel
(IOC) orders to ping a dark pool. Several successful BadMax
“sell” pings in rapid succession may indicate the presence of a
large AlphaMax non-displayed buy order and trigger BadMax
buy orders.

3. AlphaMax may leak information to predators with an inside
view. BadMayx, for example, may have an inside view of a dark
pool’s book, seeing non-displayed orders as they arrive. Or
BadMax may have an inside view of an algo provider’s blot-
ter, seeing the client algo parent orders as they arrive. Either
a Badmanx inside view is unauthorised or the venue providing
BadMax with an inside view of non-displayed orders is violat-
ing its obligation not to display. In both cases, an inside view
is most probably illegal and the penalty likely to be severe.

We next discuss how bad information leakage increases AlphaMax
execution shortfall.

BAD INFORMATION LEAKAGE AND EXECUTION SHORTFALL
Figure 8.4 shows two scenarios of how bad information leakage
increases AlphaMax execution shortfall. For buy orders, execution
shortfall is the execution price minus mid at order arrival as a per-
centage of the mid at order arrival. In both scenarios, AlphaMax
buys 60,000 shares from 10h00 to 15h00 in six tranches. In scenario A
the AlphaMax order has high Alpha (29bp Alpha-to-close) and in
scenario B the AlphaMax order has no Alpha (zero Alpha-to-close).
In scenario A, without bad information leakage (grey line), Alpha-
Manx shortfall is 2bp on the first tranche, 15bp on the last tranche and
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Figure 8.4 Bad information leakage and execution shortfall
(hypothetical example)

A: AlphaMax flow has high Alpha

~o— Without bad information leakage; AlphaMax shortfall 8bp
—e— With bad information leakage: AlphaMax shortfall 17bp

BadMax buys 15

along with _~ 15 29bp

AlphaMax Alpha-to-
5 close

Bad information leakage accelerates o9 29
incorporation of 29bp Alpha in price o5 T

B: AlphaMax flow has zero Alpha.

Py
z

~e— Without bad information leakage; AlphaMax shortfall 7bp
—o— With bad information leakage: AlphaMax shortfall 14bp

BadMax buys
along with —7
AlphaMax 4

24

Bad information leakage
increases impact

Zero
Alpha-to-
close

4 6 0

Open

tranche tranche tranche tranche tranche tranche

10nh00 11h00  12h00 13h00  14h00 15h00  Close

First Second Third Fourth Fifth Sixth

8bp overall, and AlphaMax captures 21bp Alpha. With bad informa-
tion leakage, BadMax realises AlphaMax is executing a large high-
Alpha buy order and buys along. The AlphaMax shortfall is now
5bp on the first tranche, 29bp on the last tranche and 17bp overall,
and AlphaMax captures only 12bp Alpha. Bad information leakage
accelerated the incorporation of the 29bp Alpha-to-close into the
price and reduced AlphaMax Alpha capture.’?

In scenario A, BadMax tries to capture some of AlphaMax’s high
Alpha. In scenario B AlphaMax has zero Alpha, but the AlphaMax
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execution has market impact and temporarily drives the price up. In
this scenario, BadMax tries to capture some of this temporary price
increase. Without bad information leakage, the AlphaMax shortfall
is 2bp on the first tranche, 12bp on the last tranche and 7bp overall.
With bad information leakage, BadMax realises AlphaMax is driving
the price up and buys along. AlphaMax shortfall is now 4bp on the
first tranche, 24bp on the last tranche and 14bp overall. Bad informa-
tion leakage aggravated the temporary price impact and increased
AlphaMax shortfall.?0

Figure 8.4 shows that the execution shortfall measure captures
the cost of bad information leakage. In scenario A, bad informa-
tion leakage increased AlphaMax shortfall from 8bp to 17bp, and
in scenario B, from 7bp to 14bp. All else being equal, therefore,
the algo with more bad information leakage will have a higher
shortfall.

In practice, however, it is impossible to ensure all else is equal
over an order’s life cycle; many other factors may cause the higher
price path in Figure 8.4. Other portfolio managers, for example, may
use the same stock selection model as AlphaMax, generate the same
trading idea at the same time and buy along with AlphaMax. Or a
careless algo may increase liquidity impact without bad information
leakage, by “walking up the book” (aggressively executing at pro-
gressively worse prices). In practice, therefore, it is futile to try to test
whether an algo leaks information by comparing algo performance.
We developed, instead, the BadMax approach.

THE BADMAX APPROACH AND DATA SAMPLE

In order to test whether algo executions leak information, we pretend
to be a fictitious predator, BadMax. As BadMax, we use historical
data on GSET algo executions to back-test the profitability of dif-
ferent information leakage scenarios. In one test, for example, we
assume that BadMax can identify marketable GSET algo buy execu-
tions and test whether BadMax can use this information to generate
profitable buy signals.

Our tests assume BadMax has more information on GSET algo
executions than any real-world predator is ever likely to have. Areal-
world predator, for example, will find it extremely difficult to iden-
tify GSET algo executions from publicly available data. Our tests,
therefore, provide upper-bound estimates of BadMax net Alpha.
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Table 8.1 GSET algo executions: symbol A

Time Symbol Type Side Size
9:30:00
1 9:38:42 A Marketable Buy 100
2 9:38:42 A Marketable Buy 47
3 9:38:43 A Marketable Buy 100
4  11:25:11 A Non-marketable  Sell 60
5 11:25:11 A Non-marketable  Sell 40
6 11:25:18 A Non-marketable  Sell 1
7 11:25:32 A Non-marketable  Sell 47
8 11:25:32 A Non-marketable  Sell 53
9 11:25:32 A Marketable Sell 99
10 11:26:42 A Marketable Sell 125
11 13:14:55 A Peg mid Sell 100
12 15:28:22 A Peg mid Sell 100
13 15:28:22 A Peg mid Sell 100
14 15:28:22 A Peg mid Sell 100
15 15:28:24 A Peg mid Sell 100
16:00:00

We next assume that BadMax can identify GSET algo executions
and use a sample of 15 million GSET algo executions to back-test
whether BadMax can use this information to construct profitable
predatory trading strategies.!! In a predatory trading strategy, Bad-
Max trades along with GSET algos, buying when the algo is buying
or selling when the algo is selling. A predatory strategy is profitable
if BadMax net Alpha is positive and statistically significant.

We classify the 15 million executions into three types.

1. Non-marketable: buy at bid or sell at ask on public
exchanges.?

2. Peg mid: buy or sell at mid-quote mostly on dark pools.!3

3. Marketable: buy at ask or sell at bid on public exchanges.!

In our sample, 47% of executions are non-marketable, 23% are peg
mid and 30% marketable. The average execution size is 153 shares,
execution price is US$32 and half spread at execution is 4bp.

In our tests, we assume BadMax can observe each GSET algo exe-
cution as it occurs and can identify the symbol, side and order type.
Table 8.1, for example, shows all 15 GSET algo executions in sym-
bol A on one day. BadMax observes the first execution as it occurs at
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Table 8.2 BadMax gross Alpha when trading along with GSET algo
executions

BadMax holding periods

HFT holding periods Longer holding periods

Trade ——— - -
triggers +1s +5s +15s +30s +60s +5min Close
Non-marketable (2.8) (3.7) (4.1) (4.3) (4.3) (3.8) (3.6)
GSET algo 0.00 000 000 o0.01 o001 0.02 0.08
executions

Peg mid 1.2 (1.2) (.00 (0.7) (0.3 0.7 (2.3)
GSET algo 0.00 000 0.01 o0.01 o001 0.02 0.13
executions

Marketable 0.7 1.3 1.8 2.2 2.8 41 (2.2)
GSET algo 0.00 000 0.01 o0.01 o001 0.02 0.12
executions

The sample is 14,822,997 GSET algo executions, October 3-28, 2011.
Standard errors are shown in italics.

9:38:42 and correctly identifies it as a marketable GSET algo buy exe-
cution in symbol A. In the same way, BadMax observes the second
execution, and so on for all 15 executions.

BADMAX GROSS AND NET ALPHA

We first look at BadMax gross Alpha.!> BadMax predatory strate-
gies with negative gross Alpha are not profitable even before taking
into account the round-trip cost and we drop them from considera-
tion. Table 8.2 shows BadMax gross Alpha for seven holding periods
(going across the table) and three trade triggers (going down the
table). To address concerns over predatory high-frequency trading,
three of the seven holding periods we tested (one second to fifteen
seconds) may be considered high frequency.

The first row in Table 8.2 shows the BadMax gross Alpha when
BadMax trades along with non-marketable algo executions. Bad-
Max gross Alpha is negative for all holding periods. The second row
shows the BadMax gross Alpha when BadMax trades along with peg
mid algo executions. BadMax gross Alpha is again negative for all
holding periods, except five minutes. The five-minute gross Alpha
is positive, but only 0.7bp and easily swamped by the round-trip
cost.!® The third row shows the BadMax gross Alpha when BadMax
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Table 8.3 BadMax net Alpha when trading along with marketable
GSET algo executions

BadMax holding periods

+1s +5s +15s +30s +60s +5min

BadMax gross 0.7 1.3 1.8 22 2.8 41
Alpha (bp)

Half-spread 4.7 4.8 4.8 4.8 4.8 4.8
roundtrip cost (bp)

BadMax net (4.0) (3.5) (3.0 (2.6) (2.0) (0.7)
Alpha (bp) 0.00 0.00 0.01 0.01 0.01 0.02

The sample is 4,370,360 marketable GSET algo executions, October
3-28, 2011. Standard errors are shown in italics.

trades along with marketable algo executions. BadMax gross Alpha
is now positive for all holding periods, except to the close.

Figure 8.3, therefore, indicates that trading along with non-
marketable or peg mid GSET algo executions is not a viable preda-
tory strategy. 70% of GSET algo executions are non-marketable or
peg mid. Most GSET algo executions, therefore, are not vulnerable to
predators. Only the 30% of GSET algo executions that are marketable
are potentially vulnerable to predators.

We next focus on the potentially vulnerable marketable GSET algo
executions and on the six holding periods with positive gross Alpha
and calculate BadMax net Alpha. To calculate net Alpha, we must
specify the round-trip cost of the BadMax strategy. Since gross Alpha
is only 4.1bp at five minutes and much lower for HFT holding peri-
ods, BadMax must keep the round-trip cost as low as possible by
establishing small positions and by using peg mid orders at trade-
in.”” For the five-minute holding period, for example, the BadMax
round-trip strategy is:

¢ BadMax observes a marketable GSET algo buy execution in
symbol XYZ;

¢ BadMax immediately sends a 200-share peg mid IOC order to
buy XYZ; the expected fill rate is only 20% but BadMax buys
at mid and does not pay the half-spread at trade-in;'®

» BadMax trades out five minutes later selling at bid and paying
the half-spread.
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The BadMax round-trip cost, therefore, is the half spread at trade-
out.’ Table 8.3 shows the BadMax net Alpha for the six holding
periods with positive gross Alpha. BadMax net Alpha is negative
for all six holding periods. For the five-minute holding period, for
example, BadMax gross Alpha is 4.1bp, the half-spread at trade-out
is 4.8bp and the BadMax net Alpha is —0.7bp. Even with superior
information, therefore, BadMax cannot generate positive net Alpha
by trading along with marketable GSET algo executions. BadMax
must try harder. In the next section, BadMax tries to generate positive
net Alpha from clusters of marketable GSET algo executions.

CLUSTERING ANALYSIS AND THE HIGH ALPHA OF LARGE
CLUSTERS

Figure 8.3 shows that large GSET algo parent orders have high
Alpha. Tables 8.2 and 8.3 suggest that when GSET algos slice up
these large parent orders into small child orders, mix them with
small low-Alpha orders and execute them over time the high Alpha
disappears. But can BadMax identify the large high-Alpha algo par-
ent orders from clusters of small algo executions? To answer this
question we examine sequences of GSET algo executions, identify
clusters and measure their Alpha signal.

We tested many clustering definitions. We present the results for
the following definition: executions form a cluster if they are less
than 60 seconds apart, have the same symbol, the same side and
originate from marketable GSET algo child orders.?’ Using this def-
inition, the first three executions in Table 8.1 form a three-execution
cluster of marketable GSET algo buy executions in symbol A. The
ninth execution in Table 8.1 stands alone with no same symbol and
no same-side marketable GSET algo execution within 60 seconds
and so forms a one-execution non-cluster.!

Using our clustering definition, we constructed 703,765 clusters of
marketable GSET algo executions. The average cluster has six execu-
tions with five seconds between executions. In Table 8.4, we arrange
the 703,765 clusters into 10 groups: one-execution non-clusters, two-
execution clusters, etc, all the way to extreme clusters with more
than 100 executions. The one-execution non-clusters account for 44%
of all clusters but include only 7% of all executions; the extreme
clusters account for only 1% of all clusters but include 26% of all
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Table 8.4 Clusters of marketable GSET algo executions

Cluster
group A B C D E F
1 1 311,130 311,130 44 7 NA
2 2 127,004 254,008 18 6 9
3 3 368,066 204,198 10 5 9
4 4-5 67,322 296,317 10 7 9
5 6-10 61,469 461,707 9 11 8
6 11-15 22,486 285,176 3 7 8
7 16-25 18,921 372,819 3 9 7
8 26-50 14,745 520,084 2 12 5
9 51-100 7,508 520,926 1 12 4
10 >100 5,114 1,143,995 1 26 3
All All 703,765 4,370,360 100 100 5

The sample is 4,370,360 marketable GSET algo executions, October
3-28, 2011. A, Executions in cluster; B, number of clusters; C, number
of executions; D, percentage of clusters; E, percentage of executions;
F, execution gap (in seconds).

executions. The average time between executions is nine seconds on
two-execution clusters and only three seconds on extreme clusters.?

Part (a) of Figure 8.5 shows the five-minute net Alpha of differ-
ent size clusters. To calculate this net Alpha we first calculate the
gross Alpha for each cluster group. To calculate the five-minute gross
Alpha of three-execution clusters, for example, we focus on the three-
execution clusters in our sample and calculate the mid-quote move
from first execution in each three-execution cluster to five minutes
later.?? To calculate the five-minute net Alpha we subtract the half-
spread at trade-out from gross Alpha. The graph shows that the
five-minute net Alpha increases with cluster size. The five-minute
net Alpha, which averaged —0.7bp across all marketable GSET algo
executions (Table 8.3), is —3.3bp for two-execution clusters, increases
to 2.7bp for clusters with 16-25 executions and is a spectacular 13.1bp
on extreme clusters.

BadMax wants to identify the large clusters and capture their high
Alpha. To capture this high Alpha BadMax must identify large clus-
ters and trade in at the first clustered execution. GSET algos, how-
ever, generate many small clusters and few large clusters. Our sam-
ple contains 506,000 clusters with less than four executions (gross
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Figure 8.5 The Alpha signal from clusters of marketable GSET algo
executions
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The sample is 4,370,360 marketable GSET algo executions, October 3—28, 2011;
net Alpha not significantly different from zero is shown as zero. (a) Five-minute net
Alpha from first execution in clusters of marketable GSET algo executions. (b) Five-
minute BadMax net Alpha from different positions in clusters of marketable GSET
algo executions.

Alphaless than 2.3bp) but only 27,000 clusters with more than 25 exe-
cutions (gross Alpha more than 11.2bp). Because BadMax observes
executions as they occur over time, at the first clustered execution
BadMax cannot distinguish between the many small low-Alpha
clusters and the few large high-Alpha clusters.

To identify large high-Alpha clusters, BadMax must count clus-
tered executions sequentially as they occur over time. On observing
a second clustered execution, for example, BadMax filters out all
one-execution low-Alpha non-clusters. On observing a third clus-
tered execution, BadMax also filters out all two-execution low-Alpha
clusters, and so on. As BadMax waits for each successive clustered
execution, however, BadMax loses Alpha. BadMax, therefore, faces
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a trade-off:

¢ as BadMax waits longer to observe more clustered executions,
it filters out more of the small low-Alpha clusters and buys
into the larger higher-Alpha clusters;

¢ but as BadMax waits longer, BadMax loses more Alpha.

To quantify this trade-off and choose the wait time that maximises
BadMax net Alpha, we calculate BadMax net Alpha from each suc-
cessive execution in a sequence of clustered executions. At the second
clustered execution we calculate BadMax net Alpha relative to mid
at second execution.?* At the third clustered execution we calculate
BadMax net Alpha relative to mid at third execution, and so on.

Part (b) of Figure 8.5 shows the five-minute BadMax net Alpha at
ten different positions in a sequence of clustered executions. BadMax
net Alpha at the second clustered execution, for example, is —1.7bp,
at the tenth clustered execution is zero and peaks at a mere 0.8bp at
the twenty-fifth clustered execution.?> The BadMax optimal strategy,
therefore, is to wait for the twenty-fifth clustered execution.

Comparing the graphs in Figure 8.5, we see that the high Alpha
of large clusters in part (a) disappears when BadMax tries to iden-
tify the large clusters and capture their high Alpha (part (b)). Fig-
ure 8.5, therefore, highlights our most striking finding: large clusters
of marketable GSET algo executions have high Alpha, but BadMax
can extract little if any Alpha from these large high-Alpha clusters.

We next focus on clusters with 26-50 executions and show why
even though these clusters have high-Alpha BadMax cannot capture
it. In Figure 8.5 the five-minute net Alpha from the first execution in
clusters with 26-50 executions is 6.4bp, but when BadMax optimally
trades in at the twenty-fifth clustered execution the net Alpha is only
0.8bp. Figure 8.6 plots the intra-cluster Alpha for clusters with 26-50
executions and shows that BadMax loses 9.9bp Alpha waiting for
the twenty-fifth clustered execution.?

BadMax also loses Alpha by trading-out after the Alpha peaked.
Figure 8.6 shows that large clusters of GSET algo executions are asso-
ciated with high impact and reversal (from 12.6bp at last execution to
9.0bp to the close). With a five-minute holding period, BadMax will
trade out well after the Alpha peaked. At the twenty-fifth clustered
execution, BadMax buys into many 25-execution clusters where the
price is about to revert and buys into few 100-execution clusters
where the price will continue rising.
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Figure 8.6 Intra-cluster Alpha and reversal for clusters with 26-50
executions
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Clusters with 25-50 executions consist of 520,084 GSET algo marketable
executions, October 3-28, 2011.

Figure 8.7 Tape footprint of marketable GSET algo execution
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IDENTIFYING GSET ALGO EXECUTIONS FROM THE TAPE

So far we have assumed that BadMax had superior information and
could identify marketable GSET algo executions. In this section,
we make the more realistic assumption that BadMax gets execu-
tion information from the Tape, and we examine whether BadMax
can identify marketable GSET algo executions in this way. BadMax
can easily identify marketable executions from the Tape by com-
paring execution price to mid-quote: above-mid execution prices
indicate marketable buy executions and below-mid prices indicate
marketable sell executions.”” But how can BadMax distinguish the
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marketable GSET algo executions from all other marketable execu-
tion on the Tape? Our data shows that 71% of marketable GSET algo
executions are for 100 shares. So the typical Tape footprint of mar-
ketable GSET algo buy executions is above-mid 100-shares prints.
On a typical day, 62% of all above-mid Tape prints are for 100 shares
and GSET algos account for only 0.7% of these prints (Figure 8.7).2

Can BadMax easily identify large clusters of marketable GSET
algo executions from the Tape? To answer this question, we focused
on clusters with more than 25 marketable GSET algo executions.
For each cluster, we then counted all same-symbol same-side mar-
ketable 100-shares Tape prints over the cluster’s duration; GSET algo
prints account for only 13% of these prints. We repeated the calcula-
tion for extreme clusters with more than 100 marketable GSET algo
executions; in this case, GSET algo prints account for only 14% of
all Tape prints. Even large clusters of marketable GSET algo exe-
cutions, therefore, leave almost no footprint on the Tape. BadMax
cannot extract GSET algo Alpha by analysing the Tape.

CONCLUSION

Based on the predatory strategies we have back-tested so far, GSET
algo executions do not leak information that predators can profitably
exploit by trading along. Our back-tests show the following.

¢ Non-marketable and peg mid algo executions are associated
withnegative Alpha and therefore do notleak information that
predators can exploit.

e Marketable algo executions are associated with low positive
Alpha but this Alpha does not cover the predators” round-
trip cost; marketable executions, therefore, also do not leak
information that predators can exploit.

e Large clusters of marketable algo executions are associated
with high positive Alpha, but, because these clusters are
expensive to identify, predators can capture little if any Alpha.

GSET algo users that are still concerned that their marketable exe-
cutions may leak information should be reassured by the relatively
low usage GSET algos make of marketable executions: only 30% of
GSET algo executions are marketable and vulnerable to predators.
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Table 8.5 Alpha from first execution in clusters of marketable GSET algo executions

Gross Alpha (bp) from mid at

Exec. Exec. Half Exec. Exec. first execution to mid at:
in Cluster Exec. size spread gap price - - ~
cluster no. no. (shares) (bp) (s) (US$) 1s 5s 15s 30s 60s 5m Close
1 311,130 311,130 120 5.6 33 0.3 0.5 0.7 0.8 0.9 1.9 6.2
0.71 0.01 0.04 001 001 0.02 002 003 006 037
2 127,004 254,008 124 5.2 9 32 0.5 0.8 0.9 1.0 1.0 1.8 4.6
0.51 0.02 0.05 0.06 0.01 002 002 003 004 0.10 057
3 68,066 204,198 129 5.2 9 31 0.6 1.0 1.4 1.5 1.5 23 4.0
1.11 0.03 0.04 0.09 0.01 002 004 005 006 013 0.78
4-5 67,322 296,317 133 5.3 9 30 0.7 1.2 1.8 21 2.4 3.4 5.8
0.72 0.03 0.03 0.09 002 003 0.04 005 007 014 082
6-10 61,469 461,707 141 5.2 8 30 0.6 1.3 21 2.7 3.6 4.5 4.2
1.35 0.03 0.02 0.09 002 003 004 006 008 0.16 0.88
11-15 22,486 285,176 153 4.8 8 31 0.6 1.3 2.3 3.2 4.9 6.7 4.8
2.09 0.05 0.03 0.15 002 005 0.08 o0.10 0.14 0.28 1.51
16-25 18,921 372,819 157 4.5 7 31 0.5 14 2.5 3.4 5.1 8.1 7.0
4.60 0.04 0.02 0.16 003 0.05 0.09 o0.12 0.15 031 1.66
26-50 14,745 520,084 166 4.2 5 31 0.5 1.6 3.0 4.2 6.2 11.2 9.0
3.41 0.04 0.02 0.18 003 0.07 011 0.14 019 040 1.99
51-100 7,508 520,926 185 41 4 31 0.6 1.6 3.1 4.5 6.4 128 6.1
8.00 0.06 0.01 026 005 009 017 023 031 062 293
>100 5114 1,143,995 192 3.9 3 29 0.7 1.9 3.6 4.6 70 164 103
6.22 0.07 0.01 027 007 014 021 028 041 101 380
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Table 8.5 Continued

Exec. Half spread (bp) Net Alpha (bp) from mid at first execution to bid at
in 8 - - -
cluster 1s 5s 15s 30s 60s 5m Close 1s 5s 15s 30s 60s 5m Close
1 5.8 5.9 5.9 5.9 5.9 5.8 0.0 (5.3) (5.2) (5.0) (4.9) (4.7) (3.7) 6.2
0.01 0.01 0.01 0.01 0.01 o0.01 0.02 0.02 0.02 0.03 0.03 0.06 0.4
2 54 55 55 55 55 54 0.0 (47) (45) (44) (43) (42 (3.3 4.6
0.02 0.02 0.02 002 0.02 002 0.02 0.02 0.03 0.04 0.05 0.10 0.6
3 5.4 5.5 5.6 5.5 5.5 5.5 0.0 (4.6) (4.4) (4.0) (3.9) (3.8) (2.9) 4.0
0.03 0.03 003 003 0.02 0.02 0.03 0.04 0.04 0.05 0.07 0.14 0.8
4-5 5.5 5.6 5.7 5.6 5.6 5.5 0.0 (4.6) (4.3) (3.8) (3.5) (3.1) (2.0) 5.8
0.03 0.03 003 0.03 0.03 0.03 0.03 0.04 0.05 0.06 0.07 0.14 0.8
6-10 154 5.5 5.5 5.5 55 5.5 0.0 (4.6) (4.2) (3.4) (2.8) (1.9) (0.9) 4.2
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.06 0.08 0.16 0.9
11-15 4.9 5.0 5.0 5.0 5.1 5.0 0.0 (4.2) (3.6) (2.6) (1.7) (0.2) 1.5 4.8
0.05 0.05 004 004 005 0.04 0.05 0.06 0.08 0.11 0.14 0.3 1.5
1625 4.6 4.7 4.7 4.8 4.7 4.8 0.0 (3.9) (3.2) (2.2) (1.3) 0.3 2.7 7.0
0.04 0.04 0.04 004 004 0.05 0.05 0.07 0.09 0.12 0.2 0.3 1.7
2650 43 44 45 45 44 4.4 0.0 (36) (28) (1.5) (0.3) 1.5 6.4 9.0
0.04 0.04 004 004 004 0.04 0.05 0.08 0.12 0.15 02 0.4 2.0
51-100 42 43 43 43 43 43 0.0 (34) (25 (1.2 0.0 2.0 8.8 6.1
0.06 0.06 006 006 0.06 0.10 0.08 0.12 0.20 0.26 0.3 0.7 2.9
>100 39 40 40 40 40 441 0.0 (800 (1.9 (0.2 0.8 34 131 103
0.07 0.07 007 0.07 0.07 0.08 0.12 0.18 0.26 0.3 0.5 1.2 3.8

Sample consists of 4,370,360 GSET algo marketable executions, October 3—28, 2011; standard errors are shown in italics.
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Table 8.6 The BadMax profitability grid: BadMax net Alpha is shown by execution position in the cluster
Gross Alpha (bp) from mid at
Pos. Exec. Half Exec. first execution to mid at:
in Exec. size spread price - )
cluster no. (shares) (bp) (USS) 1s 5s 15s 30s 60s 5m Close
1 703,765 127 5.3 32 0.5 0.8 1.2 1.5 1.8 3.0 5.6
0.00 0.01 0.01 0.02 0.02 0.04 0.25
2 392,635 133 5.1 31 0.6 1.1 1.5 1.8 2.2 3.4 4.5
0.01 0.01 0.02 0.02 0.03 0.06 0.34
3 265,631 137 5.1 30 0.7 1.2 1.7 2.0 2.4 3.8 4.0
0.01 0.01 0.02 0.03 0.04 0.08 0.42
5 157,272 143 5.0 30 0.8 1.4 2.0 2.4 2.9 4.4 3.5
0.01 0.02 0.03 0.04 0.05 0.11 0.57
10 75,966 149 4.6 31 0.8 1.5 2.1 2.6 3.2 4.7 2.5
0.02 0.03 0.04 0.06 0.08 0.17 0.85
15 49,447 156 4.3 31 0.8 1.6 23 2.8 3.3 5.0 1.8
0.02 0.04 0.06 0.07 0.11 0.22 1.09
25 28,589 159 4.1 30 0.9 1.7 2.4 2.9 3.6 4.9 0.1
0.03 0.05 0.08 0.11 0.15 0.31 1.46
50 12,951 172 4.0 30 0.9 1.6 2.0 24 3.1 4.0 (4.2)
0.05 0.09 0.13 0.18 0.25 0.48 2.26
100 5,183 183 3.8 29 0.8 1.6 1.9 2.4 2.9 4.3 (7.0)
0.07 0.14 0.22 0.33 0.44 0.84 3.71
200 1,819 173 3.8 27 0.7 1.2 1.0 1.7 3.1 6.4 (17.8)
0.12 0.21 0.39 0.54 0.83 1.41 6.35
Sample consists of 4,370,360 GSET algo marketable executions, October 3-28, 2011; standard errors are shown in italics.
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Table 8.6 Continued.

Exec. Half spread (bp) Net Alpha (bp) from mid at first execution to bid at
in - - - - . -
cluster 1s 5s 15s 30s 60s 5m Close 1s 5s 15s 30s 60s 5m Close

1 5.5 5.6 5.6 5.6 5.6 5.5 0.0 (4.8) (4.6) (4.2) (4.0) (3.6) (2.3) 5.6
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.05 0.3

2 53 54 54 54 54 53 0.0 (45) (42) (38 (35 (31 (1.7 4.5
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.06 0.3

3 53 54 54 54 53 53 0.0 (44) (41) (36) (32 (7)) (1.4 4.0
0.01 o0.01 o001 0.01 o0.01 o001 0.02 0.02 0.02 0.03 0.04 0.08 04

5 51 52 52 52 52 51 0.0 (42) (38 (32 (28 (22) (0.7) 3.5
0.02 0.02 002 0.02 002 002 0.02 0.02 0.03 0.04 0.05 0.1 0.6

10 47 48 48 48 48 47 0.0 87) (32 (26) (21) (1.4 (0.0 2.5
0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.06 0.08 0.2 0.9

15 4.5 4.6 4.6 4.6 4.6 4.5 0.0 (3.5) (2.8) (2.2) (1.7) (1.2) 0.5 1.8
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.06 0.08 0.1 0.2 1.1

25 4.3 4.3 4.4 4.4 4.4 4.3 0.0 (3.2) (2.5) (1.8) (1.3) (0.5) 0.8 0.1
0.03 0.03 0.03 0.03 004 004 0.04 0.06 0.09 0.1 02 0.3 1.5
50 41 42 42 42 42 42 0.0 (800 (23) (1.9 (1.4) (05 (0.1) (4.2)
0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.1 02 02 0.3 0.5 2.3
100 39 40 40 40 40 40 0.0 (29) (24) (2.0 (1.5 (06) 0.3 (7.0)
0.07 0.07 0.07 007 0.07 0.08 0.1 0.2 0.3 0.4 0.5 1.0 37
200 39 40 40 41 41 40 0.0 (270 (25) (26) (1.90 (0.2 1.7 (17.8)
0.13 0.13 0.13 0.13 0.14 0.14 0.2 0.3 0.5 0.7 0.9 1.4 6.4

Sample consists of 4,370,360 GSET algo marketable executions, October 3—28, 2011; standard errors are shown in italics.
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Concerned algo users can further reduce their marketable algo exe-
cutions by choosing more passive algo settings, but must be care-
ful not to end up being too passive.?? Concerned algo users can
also further reduce the Tape footprint of marketable algo executions
by pinging the mid-quote before reaching across the market and
executing at the quote.

APPENDIX: THE BADMAX PROFITABILITY GRID

In this appendix we describe in more detail some of the BadMax
back-tests we ran on clusters of marketable GSET algo executions.
Table 8.5 shows the gross and net Alpha of ten different cluster
groups for seven different holding periods.

In Table 8.5, we calculate the Alpha of a cluster from first execu-
tion. To calculate the five-minute gross Alpha of three-execution buy
clusters, for example, we focus on the three-execution buy clusters
and calculate Alpha as the mid-quote five minutes after first execu-
tion minus the mid at first execution as a percentage of the mid at
first execution in basis points. Net Alpha equals gross Alpha minus
the half spread at trade-out. The five-minute net Alpha, for exam-
ple, equals the five-minute gross Alpha minus the half spread five
minutes after first execution. For holding to close, we use the closing
price to calculate gross Alpha and assume that the round-trip cost is
zero. For all holding periods except to the close, gross and net Alpha
increase with cluster size. Figures in bold show the holding peri-
ods and cluster sizes where the BadMax strategy would have been
profitable if BadMax could have identified the cluster size at first
execution and established the position at first execution. A strategy
is profitable if net Alpha is positive and statistically significant (the
t-statistic is greater than 2).

But this is not a realistic strategy. In practice, BadMax will iden-
tify large clusters by counting clustered executions as they occur in
sequence over time. Table 8.6 shows the BadMax gross and net Alpha
for this more realistic strategy. We call Table 8.6 the BadMax prof-
itability grid. The grid shows BadMax gross and net Alpha from
ten different positions in a sequence of clustered executions and
for the same seven holding periods as in Table 8.5. The five-minute
gross Alpha from the third clustered buy execution, for example,
equals the mid five minutes after the third clustered execution minus
the mid at the third clustered execution as a percentage of the mid
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at the third clustered execution, in basis points. Net Alpha again
equals gross Alpha minus the half spread at trade-out. The figures in
bold show the holding periods and cluster sizes where the BadMax
strategy is profitable.

Table 8.6 shows that HFT BadMax strategies (holding periods
from one second to one minute) are not profitable. In general, ignor-
ing holding to close, only two strategies are profitable, and in both
cases the net Alpha is small. Because the round-trip cost of hold-
ing to close is zero, five of the ten holding-to-close strategies are
profitable. The most profitable holding-to-close strategy is when
BadMax trades in at the first non-clustered execution (net Alpha
5.6bp). In this strategy, by only establishing positions at the first
non-clustered execution, BadMax avoids all subsequent clustered
executions where the price has already moved away. All the holding-
to-close strategies, however, are associated with high risk and low
Sharpe ratios.

This chapter is based on two Goldman Sachs reports by the authors
(“Information Leakage”, Street Smart no. 45, and “Do algo execu-
tions leak information?” (with Mark Gurliacci), Street Smart no. 46,
both dated February 2, 2012). This material was prepared by the
Goldman Sachs Execution Strategies Group and is not the product
of Goldman Sachs Global Investment Research. It is not a research
report and is not intended as such.

The information in this chapter has been taken from trade data and
other sources deemed reliable, but we do not state that such infor-
mation is accurate or complete and it should not be relied upon as
such. This information is indicative, based on among other things,
market conditions at the time of writing and is subject to change
without notice. Goldman Sachs’ algorithmic models derive pricing
and trading estimates based on historical volume patterns, real-
time market data and parameters selected by the user. The ability
of Goldman Sachs’ algorithmic models to achieve the performance
described in this chapter may be affected by changes in market con-
ditions, systems or communications failures, etc. Finally, factors
such as order quantity, liquidity and the parameters selected by the
user may affect the performance results. The opinions expressed
in this chapter are the authors” and do not necessarily represent
the views of Goldman, Sachs & Co. These opinions represent the
authors’ judgement at this date and are subject to change. Gold-
man, Sachs & Co. is not soliciting any action based on this chapter.
It is for general information and does not constitute a personal rec-
ommendation or take into account the particular investment objec-
tives, financial situations or needs of individual users. Before acting
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on any advice or recommendation herein, users should consider
whether it is suitable for their particular circumstances. Copyright
2013 by Goldman, Sachs & Co.

“Other traders” may include competing agency algos. In this chapter, we use three fictitious
traders to facilitate the exposition: AlphaMax is a fictitious buy-side trader, BadMax is a
fictitious predator buying along with AlphaMax and GoodMax is a fictitious trader selling
when AlphaMax is buying.

Statistical arbitrage and pairs trading strategies are examples of good information leakage.

Figure 8.1 raises the intriguing possibility that BadMax may also be GoodMax: BadMax may
at some point buy along with AlphaMax and at another point sell to AlphaMax.

The sample period is October 3 to October 28, 2011.

For buy orders, we measure Alpha as same-day closing price minus mid at order arrival as a
percentage of the mid at order arrival.

For buy executions, we measure Alpha as same-day closing price minus mid at execution
time as a percentage of the mid at execution time.

Below-mid executions are usually followed by a price drop, and below-mid AlphaMax sell
executions may trigger BadMax sell orders.

AlphaMax orders may also leak information through the Tape. This happens when AlphaMax
chooses to display limit orders. Most of the time this is good information leakage intended
to attract counterparties. But displaying orders may also result in bad information leakage.
Significantly more displayed depth at bid than at ask, for example, is usually associated
with a subsequent drop in price. If AlphaMax displays a large sell limit at the bid, therefore,
AlphaMax may trigger BadMax sell orders.

This scenario also shows that bad information leakage does not always lead to post-trade
reversal.

In this scenario, AlphaMax’s impact is BadMax’s Alpha signal. For the strategy to be profitable,
BadMax must unwind the position before the price reverts.

The sample period is October 3 to 28, October 2011. We focus on NYSE and Nasdagq-listed
common stock and drop stocks less than US$1 or more than US$150. We also drop executions
before 09h35 or after 15h55 and filter out outliers.

We classify executions as non-marketable if they were generated by non-marketable algo
child orders.

We classify executions as peg mid if they were generated by marketable peg mid algo child
orders; a small fraction of peg mid orders execute at better than the mid (price improvement).

We classify executions as marketable if they were generated by marketable algo child orders;
a small fraction of marketable orders execute inside the spread (price improvement).

For BadMax buy orders, gross Alpha equals mid at trade-out (end of holding period) minus
mid at trade-in as a percentage of the mid at trade-in, in basis points (see also the appendix).

See the next section for more details on the BadMax round-trip cost.
The assumption of small positions is also important for the validity of our back-tests.

We get the 20% fill rate estimate from a May 2011 (internal, unpublished) analysis of small peg
mid IOC orders sequentially routed to five dark pools and exchanges (27% fill rate, average
size 159 shares).

We ignore broker and venue fees.

Why 60 seconds? Thinking like BadMax, we tested several time gaps and chose 60 seconds
because it provided the strongest Alpha signal. The clustering definition can also be algo
specific (eg, clusters of VWAP algo executions) or venue specific (eg, clusters of SIGMA X
executions). We tested many different clustering definitions.
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The tenth execution in Table 8.1 also forms a one-execution marketable sell non-cluster.
The average number of executions in the extreme clusters is 224.

More precisely, for buy clusters, we calculate the five-minute Alpha as the mid five minutes
after the first execution in the cluster minus the mid at first execution as a percentage of the
mid at the first execution, in basis points.

More precisely, for buy clusters, we calculate the five-minute gross Alpha at second clustered
execution as the mid five minutes after the second clustered execution minus the mid at
second clustered execution as a percentage of the mid at second clustered execution, in basis
points.

In Figure 8.5, we focus on the five-minute holding period because it gives the strongest Alpha
signal; in the Appendix, we present results for all of the seven holding periods we tested.

Intra-cluster Alpha is the price (mid-quote) move from first execution to subsequent
executions in the cluster.

This rule (known as the Lee—Ready rule) correctly identifies as marketable 88% of the mar-
ketable GSET algo executions in our sample; the remaining 12% get price improvement
executing at mid or better and the Lee-Ready rule cannot correctly identify them.

Our sample consists of tick data on the 30 DJIA stocks for October 3, 2011.

While passive (non-marketable) orders are not vulnerable to information leakage, they are
vulnerable to adverse selection.
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Implementation Shortfall with
Transitory Price Effects

Terrence Hendershott; Charles M. Jones;
Albert J. Menkveld

University of California, Berkeley; Columbia Business School;
VU University Amsterdam

At the time of writing, regulators and some large investors have
raised concerns about temporary or transitory volatility in highly
automated financial markets.! Itis far from clear that high-frequency
trading, fragmentation and automation are contributing to transi-
tory volatility, but some institutions have complained that their exe-
cution costs are increasing. In this chapter, we introduce a method-
ology for decomposing the price process of a financial instrument
into its permanent and transitory components, and we explore the
insights from applying this methodology to execution cost measure-
ment. Our methodology allows an institutional investor to accu-
rately measure the contributions of transitory price movements to
its overall trading costs. The methodology is particularly applicable
to an investor that splits a large order into small pieces and executes
it gradually over time.

The importance of transitory price impact has been well known
in the academic literature since the early work on block trading (see,
for example, Kraus and Stoll 1972).2 While it is fairly straightforward
to measure the transitory price impact of a block trade, it is a much
greater challenge to measure the transitory price impact when a large
institutional parent order is executed in perhaps hundreds of smaller
child order executions. The key innovation of our approach is that
we estimate the temporary component at each point in time and,
in particular, whenever a child order is executed. By summing over
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all child orders, we can thus measure the effect of the temporary
component on overall trading costs.

To be more precise, we extend the classic Perold (1988) “imple-
mentation shortfall” approach to decompose ex post transaction costs
into various components, one of which accounts for the trading
costs associated with transitory pricing errors. Because trading cost
analysis is often performed on an institution’s daily trading, we first
illustrate our transaction cost measurement approach at a daily fre-
quency. However, our methods are much more precise when more
disaggregated trading data are available. Using detailed information
on the intra-day child order executions from a larger institutional
parent order, we show how the transitory price component evolves
with trading on a minute-by-minute basis, and we show how this
transitory price component contributes to overall implementation
shortfall.

In some ways, our work is most closely related to Almgren et al
(2005), who assume a particular functional form for both permanent
and transitory price impacts, with limited persistence in the latter.
They then apply their model to a large set of institutional orders
to characterise permanent and transitory components of transac-
tion costs as a function of various stock and order characteristics.?
In contrast, we allow the data to determine the persistence of the
temporary component.

IMPLEMENTATION SHORTFALL

Even for those who are intimately familiar with trading cost analy-
sis, Perold (1988) is worth rereading. For example, he frames the
discussion on p. 4:

After selecting which stocks to buy and which to sell, “all” you
have to do is implement your decisions. If you had the luxury of
transacting on paper, your job would already be done. On paper,
transactions occur by [a] mere stroke of the pen. You can transact
at all times in unlimited quantities with no price impact and free
of all commissions. There are no doubts as to whether and at what
price your order will be filled. If you could transact on paper, you
would always be invested in your ideal portfolio.

There are crucial differences between transacting on paper and
transacting in real markets. You do not know the prices at which
you will be able to execute, when you will be able to execute, or
even whether you will ever be able to execute. You do not know
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whether you will be front-run by others. And you do not know
whether having your limit order filled is a blessing or a curse
— a blessing if you have just extracted a premium for supplying
liquidity, a curse if you have just been bagged by someone who
knows more than you do. Because you are so much in the dark,
you proceed carefully, and strategically.

These comments are just as apt in 2013 as they were in 1988,
except thatin 2013 the concern about front-running is mainly a worry
about being sniffed out by algorithmic traders. Some algorithms use
sophisticated forecasting and pattern recognition techniques to pre-
dict future order flow and thus future price changes. To the extent
that the slicing and dicing of large institutional orders into many
smaller trades leaves a footprint in the data, algorithms may attempt
to identify and trade ahead of these large institutional orders. Any
such order anticipation could increase the transitory impact of a
large order and thereby increase its overall cost.

With a few notational changes we follow the methodology of Per-
old (1988, Appendix B) for measurement and analysis of implemen-
tation shortfall. At the beginning of a measurement period, the paper
portfolio is assumed to be worth the same amount as the real port-
folio. At the end of the period, any differences in value capture the
implementation shortfall. In general, the length of the measurement
period is not important. For many institutions, the preferred period
length is one day, but it can be longer or shorter. The key constraint
is that if implementation shortfall is to be measured for an order that
is executed gradually over time, the measurement period must span
the time over which the order is executed.

Assume there are N securities with one being cash. Let #n; denote
the number of shares of security i in the paper portfolio, w? be the
number of shares of security i in the real portfolio at the beginning
of the period, and w{ be the number of shares held at the end of the
period. w¢ differs from w? by the shares traded in security i.

Denote the times of trades by j = 1,..., K. Denote the number
of shares traded in security i at time j by t;; t;; is positive for buys,
negative for sales and zero when there is no trade. Therefore, the
ending shareholding in security i is

K
w§ = wp + Z tij 9.1)
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Denote the prices at which transactions take place by pjj; p;; are
net of incremental costs such as commissions and transfer taxes. Let
the price of security i be p? at the beginning of the period and p¢ at
the end. While the p;; must be transaction prices, the two benchmark
prices can be either trade prices or quote midpoints.

Assuming there are no net cashflows into or out of the real port-
folio, all transactions are financed with proceeds of other transac-
tions. That is, at each time j, >’ t;p;; is zero when summed over i = 1
to N.

Let the value of the paper and real portfolios at the beginning of
the period be

Vo = > npP (9.2)

Let the end-of-period values of the paper and real portfolios be
Vp and V7, respectively

Vp=>mpt and Vi=> wipt (9.3)

The performance of the paper portfolio is V}, — Vi, and the perfor-
mance of the real portfolio is Vy — V. The implementation shortfall
is the difference between the two.

The performance of the real portfolio can be expanded as

2. (fpf — wpp?) = X f (pf —pP) = X pP (wf — wp)
= 2L Wi (pf = p) = 2 2. (pi = p)ty - (94)
The performance of the paper portfolio can be expanded as
2 mipf = p) ©5)

Subtracting the real portfolio performance from paper portfolio
performance completes the calculation

implementation shortfall

= 2 2y =Pty + 2D - D - wf) - (9.6)

execution cost opportunity cost

The term (p;; — p?) is the per-share cost of transacting at pij instead
of at p?, and this cost is applied to tij traded shares. The weighted
sum is the total execution cost relative to the pre-trade benchmark.
The term (p§ — pP) is the paper return on security i over the period.
The opportunity cost is the sum of these returns weighted by the
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size of the unexecuted orders. While opportunity costs are a real
concern for institutional investors, our methodology does not offer
much insight into them, and in the rest of the chapter we focus only
on the execution cost component.

OBSERVED PRICES, EFFICIENT PRICES AND

PRICING ERRORS

The implementation shortfall incorporates the total price impact
of a large order. However, to better understand the sources of the
shortfall, it may be useful to decompose the price impact into its
permanent and transitory components. To do this we must define
and measure the efficient price and any deviations from it at each
moment in time. We take the standard approach of assuming the
efficient price is unpredictable, ie, it follows a random walk.

Minus trading frictions, the efficient price at the daily or intra-day
frequency can be characterised as a martingale process. Let ; be this
latent price

mj = mj_1 + wy 9.7)

Sometimes the quote midpoint is assumed to represent this latent
price. However, quote midpoints are not generally martingales with
respect to all available order flow, in which case Hasbrouck (1995,
p- 1179) proposes to view the random-walk component of a Stock
and Watson (1988) decomposition as the “implicit efficient price”.
Hasbrouck (2007, Chapters 4 and 8) constructs an efficient price
more generally as the projection of m; onto all available conditioning
variables, ie, the so-called filtered state estimate

iy = E*[m; | pij, pij-1,- -] 9.8)

where E*[-] is the linear projection of m; on a set of lagged prices.*
A standard approach to implementing such a projection is through
autoregressive integrated moving average (ARIMA) time series
econometrics (Hasbrouck 2007, Chapter 4). The filtered estimate can
be enriched by expanding the set of conditioning variables with
trade-based variables (eg, signed order flow), news-based variables
(eg, the Reuters sentiment score of press releases), etc.®

A more general approach constructs the “efficient price” based
on a state-space model. This nests the ARIMA approach but has the
following advantages. First, it allows for using both past and future
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information to estimate the efficient state. This is particularly rele-
vant in decomposing a price change into a permanent price change
(ie, the efficient price change) and a (transitory) pricing error. For a
particular in-sample price change, we do in fact want to “peek into
the future” to establish whether it was largely permanent or tran-
sitory. A state-space model produces, in addition to a filtered price
estimate, a so-called smoothed price estimate that also takes future
price information into account, ie

g = E*[m; | ..., pij+1, Pij, Pij1s -+ ] 9.9)

Second, the state-space approach extends naturally to multi-market
trading, where there are potentially multiple price quotes for the
same security at any instant of time. It also accounts optimally for
missing observations that arise, for example, when various markets
do not perfectly overlap. Third, structural models often generate
a system of equations in state-space form. This system can then be
taken to the data without further (potentially imperfect) transforma-
tions. A further discussion of the approach and the implementation
details are given in Menkveld et al (2007).

The efficient price estimate enables an observed price to be
decomposed into a (smoothed) efficient price and a pricing error

pii = ﬁ1,’j + Sjj (9.10)

Hereafter, the focus is mainly on the smoothed price estimate (as
opposed to the filtered estimate), as implementation shortfall is
about ex post evaluation and therefore “future” price information
is available and relevant.®

Let us reconsider part of the quote of Perold (1988):

And you do not know whether having your limit order filled is a
blessing or a curse —a blessing if you have just extracted a premium
for supplying liquidity, a curse if you have just been bagged by
someone who knows more than you do.

The efficient price estimate enables the standard implementation
shortfall calculation of Equation 9.6 to be further refined by recognis-
ing the size of these two components. The execution cost component
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of the implementation shortfall can be rewritten as

execution cost = z Z(pij — mij)ti]‘ + Z Z(ﬁ’li]‘ — ﬁ’l?)t,’j
liquid;y cost informa;i;nal cost
+ 2. 2.0m —pDty - (911)

timing cost

The first component captures liquidity cost relative to the efficient
price. If we buy at a price above the efficient price, we effectively
pay aliquidity premium, and if we buy at a lower price, we earn the
premium. The liquidity costs incorporate both the bid-ask spread
and any transitory price effects. For example, if a sequence of trades
causes the current quoted price to differ from the efficient price, this
temporary price impact is captured in the liquidity cost component.

This differs from the standard approach to measuring temporary
price impact, which compares the price immediately after execution
with a price some time later. In the standard approach, the tem-
porary impact reflects the correlation between the direction of the
order and subsequent price movements. For example, there is tem-
porary impact if prices fall after the completion of a large buy order.
The state-space approach captures this general idea, as it incorpo-
rates future price movements to estimate the permanent and tem-
porary price decomposition. However, the main advantage of the
state-space approach is that it calculates efficient prices throughout
the execution period. The temporary component can be measured
and incorporated into the liquidity cost component for each of the
N executions. In contrast, the standard approach can only measure
the temporary price impact at the end of the execution period based
on its dissipation thereafter.

The second component of the implementation shortfall captures
the informational cost, as it measures the covariation between exe-
cuted signed order flow and the efficient price change. This is some-
times referred to as the permanent price impact of the trades. If
for some reason signed flow does not correlate with efficient price
changes, then the informational cost is zero. In most financial mar-
kets, however, the order flow is potentially informationally moti-
vated, so this component is positive on average. For example, in a
classic market-making model a liquidity supplier cannot distinguish
informed from uninformed flow and therefore charges all incoming
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flow the same price impact (see, for example, Glosten and Milgrom
1985). In reality, a small informational cost component could reflect
the skill of a trader or algorithm in camouflaging the order and
having it perceived as uninformed. This component can also reflect
variation in the information environment over time. For example,
informational costs may be greater just before scheduled earnings
announcements.

The third component measures whether the timing of the trade
is correlated with the temporary component. If the parent order is a
buy, for example, then starting it when the quote midpoint is above
the efficient price increases the overall cost of the trade, all else being
equal. Conversely, starting a buy order when the price is below the
efficient price should improve its overall execution. We capture this
by assigning a negative timing cost when a trade begins in these
favourable conditions.

ILLUSTRATION OF OUR APPROACH

Decomposing the price process into its permanent and transitory
components is fundamental to our approach. Hasbrouck (2007,
Chapter 8) provides a detailed discussion of the challenges in iden-
tifying the two components. Here we follow an approach developed
for analysing cyclical macroeconomic time series. This approach
puts enough structure on the persistence of the transitory price com-
ponent to identify the two components. Morley et al (2003, p. 240)
show that the most parsimonious allowable specification for the
temporary component is an AR(2):

the order condition for identification of the unrestricted UC-
ARMA(p, q) model, in the sense of having at least as many moment
equations as parameters, isp > 0, p > g + 2, and it is just satisfied
withp =2,4 = 0.

In the state-space representation, the observation equation is

mi
p=[11 0]| s 9.12)
St-1
The state equation is
my 1 0 0 Mp—1 1 0 o,
st | =10 @1 @a||s—1|+(0 1 [ft] (9.13)
S 0 1 0 Si_o 0 0
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where the variance—covariance matrix of state innovations is

02  po,oe 0
Q=|poyoe 0?2 0 (9.14)
0 0 0

The unknown parameters in the state-space model are

(O-Wr Os, P, P1, (p2)

The observed price can be net of any market or industry sector move-
ments. This is appropriate and efficient if trading occurs only in
individual securities. Controlling for market and other factor move-
ments is more complicated if the trading is part of a larger portfolio
transaction that could possibly affect market or factor prices.

As discussed above, additional information can be used in decom-
posing the price process into its permanent and transitory compo-
nents. The most common approach is to add additional state vari-
ables reflecting publicly available order flow information, such as
buy and sell liquidity demand or the imbalance between the two.
Brogaard et al (2012) extend this approach in the state-space con-
text by using non-public information from Nasdaq on whether or
not the liquidity demander in each trade is a high-frequency pro-
prietary trading firm. Hendershott and Menkveld (2011) use NYSE
market-maker inventory data, and Menkveld (2011) uses data from
a high-frequency trading firm’s inventory positions. The amount
of data that can potentially be incorporated into the estimation is
enormous. For example, all orders, trades and news in every related
market and security could be utilised. For parsimony in our exam-
ples we only use past prices, in one case adjusted for an industry
factor.

Implementation shortfall calculations

To illustrate our approach, we use two different examples with trad-
ing data observed at different frequencies: one example with daily
trading data, and one example of a parent order where we observe
the size, time and price of the individual child order executions dur-
ing the trading day. In the daily example, we have two months’
worth of trades by the same fund in the same stock, aggregated at
the daily level, and we estimate the efficient and transitory price
components at a daily frequency. This approach is most relevant to
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investors that make each day’s trading decisions overnight while
the market is closed, because in that trading environment the imple-
mentation shortfall is naturally calculated relative to the previous
closing price.

Itis worth noting that the decomposition in Equation 9.11 requires
the efficient price estimate at the time of each transaction, 77z;;. In the
daily example, however, we only calculate end-of-day efficient price
estimates because we do not know when the trades actually take
place during the day. This timing mismatch reduces the precision
of the implementation shortfall decomposition and may also intro-
duce bias. The main issue is the allocation of the shortfall between
the first two terms of Equation 9.11: the liquidity and information
costs. These two components can be thought of as corresponding
to temporary and permanent price impacts, respectively. If there is
positive correlation between the direction of trading and the move-
ment in the efficient price, then using an estimate of the efficient price
prior to transaction j will overestimate the liquidity cost and under-
estimate the information cost. Conversely, using an estimate of the
efficient price after transaction j will underestimate the liquidity cost
and overestimate the information cost. If only coarse execution data
is available and temporary components are sufficiently persistent,
however, the decomposition may still prove useful.

For the intra-day example, we obtain an efficient price estimate for
each minute of the trading day. We use these efficient price estimates
to evaluate the execution of a single parent order that is gradually
executed over the course of about 30 minutes. The intra-day hori-
zon allows for an evaluation of the high-frequency price dynamics
during order execution.

To calculate our implementation shortfall decomposition we use
Equation 9.11 with the prices at time j modified as follows:

e the subscript i is dropped as there is only one security;

e pjis the average price at which the institution’s trades execute
at time j;

o pP is the quote midpoint prior to beginning execution;

e ii1; is the estimate of the efficient price at time j;

o /i1® is the estimate of the efficient price prior to beginning
execution.
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Using these prices, the per-share execution costs can be represented
as

N ——
liquidity cost j informational cost j

+ meb - pb)sign(tjl |tj|) (9.15)

timing cost j

21|t4| (Z (pj — 7)sign(ty) 1] + > (i — i®)sign(t)) It;|
] - . s

Daily estimation

For our first example, the execution data are from a long-short equity
hedge fund with approximately US$150 million in assets under man-
agement and an average holding period of about one month. For
each stock traded by this fund, we know the total number of shares
bought and sold each day along with the weighted average execu-
tion price. In this case, we do not have information on individual
intra-day trade executions. This is the standard granularity for insti-
tutional trading cost analysis, because this information along with
a pre-trade benchmark price (such as the previous closing price, the
opening price on the day of execution or the price at the time the
order is released) is sufficient to measure implementation shortfall.

The chosen example is for AEC, which is the ticker symbol for
Associated Estates Realty Corporation, a real estate investment trust
(REIT) listed on the New York Stock Exchange with a market cap of
around US$650 million during the sample period. We examine the
fund’s trading in AEC during November and December 2010. The
fund traded a total of 559,356 shares of AEC during this time period
on 20 separate trading days. The stock has an average daily volume
of roughly 460,000 shares over these two months, so the analysed
trades constitute about 2.8% of the total trading volume in AEC
during this interval.

The implementation shortfall decomposition is illustrated based
on daily data and one investor’s trades in a single security. The index
j runs over days and the price snapshot is taken at the end-of-day
(closing) price, ie, the bid—ask midpoint at the end of the trading day.

The state-space model characterised in Equations 9.12-9.14 is esti-
mated on daily data from January 4, 2010, to September 28, 2012. We
use daily closing stock prices to calculate excess returns over the
MSCI US REIT index, which is commonly referred to by its ticker
symbol, RMZ. To be precise, the observed p; is the log closing price
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Table 9.1 Parameter estimates

Parameter Estimate Description
O 91bp Standard deviation efficient price innovation
O 44bp Standard deviation pricing error residual
p 0.38 corr(w, €)
@1 0.65 AR1 coefficient pricing error
@2 —0.05 AR2 coefficient pricing error

Figure 9.1 The end-of-day mid-quote, the efficient price estimate and
the average execution price of the investor’s (parent) orders for each
day in the sample
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The efficient price estimate is based on a state-space model that was estimated for
the entire sample: January 4, 2010, to September 28, 2012. The price estimate is
based on the entire sample to obtain maximum efficiency. Dot size denotes order
size.

of AEC adjusted for dividends minus the log RMZ index level. The
parameter estimates are given in Table 9.1.

Figure 9.1 illustrates the estimates by plotting the observed end-
of-day (closing) mid-quote, the efficient price estimate, and the
investor’s trades each day for the trading period November 2, 2010,
to December 31, 2010. Because the pricing error follows a somewhat
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Table 9.2 Total implementation shortfall

Cost Basis points
Average liquidity cost 7.0
Average information cost 65.1
Average timing cost -20.5
Average total cost 51.6

persistent AR(2) process, the daily pricing error innovation of 44
basis points (bp) scales up to a 71bp standard deviation for the pric-
ing error itself. This means that the typical temporary component
is estimated to account for 11¢ on this US$15 stock. This is roughly
five times the typical bid—ask spread for this stock over our sample
period. The temporary component is of the same order of magnitude
as the standard deviation of daily innovations on the efficient price
(91bp).

Based on the resulting estimates of efficient prices, the total imple-
mentation shortfall of 51.6bp can be decomposed as in Table 9.2.

The negative timing cost component of —20.5bp measures the
contribution to fund performance from following a mean-reversion
trading strategy that takes advantage of temporary pricing errors.
The other notable quantity is the liquidity cost component, which
is a modest 7.0bp. Recall that, when the model is implemented at
the daily horizon, the liquidity cost component measures the aver-
age difference between execution prices and the post-trade efficient
price at the close. The gap between trade time and measurement of
the efficient price argues against making direct use of the numbers
as estimates of the cost of temporary price moves when the price
decomposition is performed at the daily horizon. Instead, we advo-
cate using this component on a relative basis to compare executions
across brokers, across stocks and over time.

To illustrate the breakdown of execution costs across days, Fig-
ure 9.2 plots the size of the total costs and each of its components for
each day’s trading. As in Figure 9.1, the size of the dot is proportional
to the amount traded (|tj]).”

As is often the case with execution cost measurement, there is
substantial variation in the costs. Daily implementation shortfalls in
this case are between —2.5% and 3.3%. The total costs are highest in
the beginning of the sample, especially for the first few large orders,
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Figure 9.2 Plots of the various components of the implementation
shortfall on investor trades each day
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Graphs are based on efficient price estimates obtained from a state-space model
and based on the entire sample: January 4, 2010, to September 28, 2012.
The components are defined in Equation 9.15. (a) Liquidity cost component;
(b) informational cost component; (c) timing cost component; (d) total cost.

suggesting that the fund quickly became aware of its price impact
and subsequently traded in smaller sizes. For these first few large
orders, the timing costs are negative, indicating that these orders
began when prices were relatively attractive, but the large informa-
tional costs quickly swamped the timing benefit. Because we are
using an end-of-day post-trade efficient price estimate to split the
price impact into liquidity (temporary) and informational (tempo-
rary) components, we do not want to overinterpret this part of the
decomposition. However, because it is a post-trade price, our liquid-
ity component bears a strong resemblance to the traditional measure
of the temporary component discussed earlier. In fact, some traders
regularly measure trading costs against a post-trade price. Our inno-
vation is to gain additional insight by using a post-trade efficient
price from the state-space model rather than use a closing quote or
closing auction price.
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Table 9.3 Values for filtered estimates

Cost Basis points
Average liquidity cost 10.4
Average information cost 69.4
Average timing cost -28.2
Average total cost 51.6

Recalculation based on filtered estimates

It is also possible to decompose the implementation shortfall using
filtered estimates of the efficient price instead of smoothed estimates
by substituting 7i1; for 7iz; in Equation 9.15. The filtered estimates yield
the values in Table 9.3.

Of course, the total implementation shortfall is calculated using
observed prices, so it remains unchanged. The timing cost compo-
nent using filtered estimates is of particular interest, because it has
anatural interpretation as the gross short-term alpha conditional on
the subset of information included in the model available at the des-
ignated pre-trade time (the previous close in this case). Using filtered
estimates, the timing cost component for this example is more nega-
tive at —28.2bp, indicating that an important source of overall return
for this investor (or equivalently, an important source of trading cost
minimisation) is trading against temporary pricing errors.

Intra-day estimation

Our second example uses data from a well-known firm that provides
equity transactions cost analysis to institutional clients. We know
the size and release time of the parent order, and the size, price
and time of each child order execution. To illustrate the method, we
choose one such parent order arbitrarily from a set of recent large
orders in less active mid-cap stocks. We also require the order to be
executed in one day. The chosen example is a December 13,2012, sell
order in HMST, which is the symbol for Homestreet, Inc, a Nasdag-
listed community bank on the west coast of the US with a market
cap of around US$360 million. The sell order was for 6,365 shares,
and the stock had an average daily volume of 119,000 shares during
December 2012.

The order was released around 11h00, and it was fully completed
in 50 child order executions over the space of about 30 minutes.
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Table 9.4 Parameter estimates from the one-minute state-space model

Parameter Estimate Description
Oy 11bp Standard deviation efficient price innovation
O 6bp Standard deviation pricing error residual
P 0.15 corr(w, €)
@1 0.76 AR1 coefficient pricing error
@2 0.19 AR2 coefficient pricing error

Table 9.5 Implementation shortfall using smoothed estimates

Cost Basis points
Average liquidity cost 48
Average information cost 219
Average timing cost -5
Average total cost 262

During the half hour from 11h00 to 11h30, total trading volume in
this symbol was 34,192 shares, so this client ended up trading 18.6%
of the total volume during this interval ®

We estimated the state-space model using national best bid and
offer (NBBO) midpoints at each minute during regular trading hours
for 15 trading days from December 1, 2012, to December 21, 2012.°
We discarded quote midpoints for the first five minutes, from 09h30
to 09h35, as we found that prices right around the open exhibited a
different pattern of persistence and were much more volatile. Thus,
the state-space model is designed to model share price behaviour
after the beginning of the trading day and, at least in this case, the
resulting implementation shortfall decomposition is best applied to
trading that avoids the opening five-minute period.

The parameter estimates from the one-minute state-space model
are given in Table 9.4.

As noted in the earlier example, the average size of the tempo-
rary component is much bigger than the standard deviation of the
innovation due to the substantial persistence implied by the AR(2)
specification. In this case, the standard deviation of the temporary
component innovation is 5.9bp, and the temporary component itself
has a standard deviation of 51bp, or about 12.5¢ on this US$25 stock.
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The autoregressive (AR) coefficients imply a slow decay of the tem-
porary component, with an estimated half-life of 14 minutes. As
in the earlier example, the correlation between innovations to the
two unobserved components continues to be positive, though it is
somewhat smaller here. The standard deviation of the random walk
component is 11bp over the one-minute interval, which scales up as
the square root of t to 216bp per trading day.

Combining the smoothed estimates of the efficient price with
the child order executions, we obtain the decomposition of the
implementation shortfall given in Table 9.5.

The overall implementation shortfall is 262bp, and the large infor-
mation cost component reflects the fact that this order is selling as
the estimated efficient price is falling. The negative timing cost com-
ponent of —5bp simply reflects the fact that the sell parent order was
released at a time when the observed midpoint was slightly above
the estimated efficient price.

Perhaps the most interesting component of our decomposition is
the liquidity cost, and it is particularly useful to compare our imple-
mentation shortfall decomposition to a more traditional one. Recall
that the liquidity cost component measures the average difference
between execution prices and the estimated efficient price in effect
at the time. While the child orders here execute an average of 48bp
below the estimated efficient price, the liquidity cost would only be
9bp if we compare trades to quote midpoints in effect at the time of
the child order execution. This is a substantial difference and high-
lights that the temporary component in prices clearly contributes to
the overall trading costs for this order.

Figure 9.3 illustrates the estimates by plotting the observed end-
of-minute NBBO mid-quote, the efficient price estimate and the
investor’s trades each minute. An initial burst of selling coincides
with a sharp price decline. We cannot make causal statements, but it
is certainly possible that the selling pressure from this parent order
caused the price decline. Much of the decline appears to be tem-
porary. The share price bounces back by noon, once this order is
completed and the selling pressure abates. This armchair empiri-
cism is confirmed by the efficient price estimate, which never moves
down as far as the observed quote midpoint and is as much as
14¢ above the mid-quote during this order execution. The devia-
tion between the observed mid-quote and efficient price begins to
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Figure 9.3 The end-of-minute mid-quote, the efficient price estimate
and the average execution price of the investor’s trades for each minute
in the sample
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The efficient price estimate is obtained from a state-space model using NBBO
midpoints at each minute during regular trading hours for 15 trading days from
December 1, 2012, to December 21, 2012, discarding quote midpoints for the first
five minutes of trading (09h30 to 09h35).

appear as child orders begin to be executed. After selling 4,365 shares
in the space of five minutes from 11.05 to 11.09 (or 23% of the 19,096
HMST shares that trade in this interval), the transitory component
reaches its maximum deviation. Thereafter, execution slows and the
transitory component gradually shrinks.

To illustrate the minute-by-minute breakdown of execution costs,
Figure 9.4 plots the size of the total costs and each of its compo-
nents for trades in each minute. As in Figure 9.3, the size of the
dot is proportional to the number of shares filled in each minute.
As noted earlier, the efficient price moves down sharply as the first
few minutes of selling unfold. This is reflected in the initial upwards
trend in the informational cost component. The liquidity component
increases rapidly from 39bp for executions at 11h05 to 64bp for the
11h11 fills. Thereafter, the liquidity component generally declines,
although the scaling of the graph makes this difficult to see. The
timing component is constant at —5bp, as this illustration is for a
single parent order. Because the informational costs are by far the
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Figure 9.4 The various components of the implementation shortfall for
trades aggregated within each minute
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The graphs are based on efficient price estimates obtained from a state-space
model using NBBO midpoints at each minute during regular trading hours for
15 trading days from December 1, 2012, to December 21, 2012, discarding quote
midpoints for the first five minutes of trading (09h30 to 09h35). The components
are defined in Equation 9.15. (a) Liquidity cost component; (b) informational cost
component; (c) timing cost component; (d) total cost.

largest component of the implementation shortfall, the pattern for
total costs closely tracks the informational cost component.

CONCLUSION

In this chapter, we decompose a sequence of observed asset prices
into a permanent component and a temporary component. We use
this price process decomposition to provide a novel and useful
decomposition of the standard implementation shortfall transaction
cost measure.

Investors often think in terms of earning the spread, evaluating
individual executions relative to the prevailing quote midpoint. Our
methodology provides an alternative benchmark. Individual execu-
tions should be evaluated against the estimated efficient price, which
can be far from the current quote midpoint (a root-mean-squared
average of 51bp in the case of HMST, our intra-day example).
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Our methodology also captures the fact that a sequence of trades
in the same direction can generate or contribute to a temporary com-
ponent, and it allows an institutional investor to measure how much
its own trading has done so. This seems particularly important in an
automated equity market structure, where transitory price impact
may be due to some traders following order anticipation strategies.
An institutional investor or algorithm provider can use these empir-
ical techniques to discern whether its algorithms or trading prac-
tices minimise these temporary price moves. The empirical exam-
ples indicate that the temporary component could be an important
contributor to overall trading costs: 48bp out of a total of 262bp for
the intra-day example that we study.

We have provided two simple applications of the methodology
here. While we only use past prices, we want to reiterate that addi-
tional variables can and probably should be added to the filtration.
Signed order flow, information on short sales and position data can
all be valuable in determining the latent efficient price.

Finally, our decomposition may be useful in implementing the
optimal trading strategy in Garleanu and Pedersen (2013). They
derive an elegant and insightful closed-form solution for optimal
dynamic execution in the presence of quadratic costs and decaying
sources of alpha. Their model draws a distinction between tempo-
rary and permanent price impacts, and our estimates of the perma-
nent and temporary components of transaction costs can be used to
operationalise their results.

APPENDIX: IMPLEMENTATION DETAILS

A useful general reference on state-space models (S5SMs) is Durbin
and Koopman (2001). One standard way to the estimate parameters
of a state-space model is maximum likelihood. The Kalman filter is
used to calculate the likelihood given a particular set of parameters.

One standard approach to implement maximum likelihood is to
use the expectation-maximisation (EM) algorithm.!? Its appeal over
Newton-Raphson-type approaches is that it avoids a numerically
expensive calculation of the inverse of the matrix of second-order
partials, and with each step the likelihood is guaranteed to increase.
Its relative disadvantage is that convergence is relatively slow in the
latter stages. Both approaches, however, could converge to a local
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maximum. One way to avoid local maximums is to search over a
parameter grid.

We use two different estimation methods for the two examples
presented in our illustration (see pp. 192ff). The intra-day example
employs the state-space estimation commands in Stata. To investi-
gate robustness, we experimented with different hill-climbing algo-
rithms, starting values and convergence tolerances. In every case,
we ended up with the same estimates, suggesting that the likelihood
function is well behaved.

The likelihood optimisation for the daily example is implemented
in PyrHON and uses the PYKALMAN package.!! The EM algorithm
is combined with a parameter grid search for the AR parameters
of the pricing error process: @1 and @5. The choice for a grid on
this subset of model parameters is informed by studying conver-
gence based on random sets of starting values. It turns out that
the parameters at the optimum are particularly sensitive to start-
ing values of @1 and @,. The grid search involved a grid over
[-0.8,—0.6, —0.4, —0.2,0,0.2,0.4,0.6,0.8]% and finer grids with step
sizes down to 0.05 around the optimum.

1 See, for example, the US Securities and Exchange Commission’s 2010 concept release on equity
market structure (Release No. 34-61358).

2 See Duffie (2010) for an extensive discussion of temporary price impacts from large informa-
tionless demands for liquidity.

3 Engle and Ferstenberg (2007) also estimate implementation shortfall costs on a sample of
institutional orders, focusing on the variance of the execution costs as well as their mean.

4 The observed p;; in this section can be either trade prices or quote midpoints. In this chapter
we always use mid-quotes.

5 Non-public information can also be incorporated into the estimation. See Hendershott and
Menkveld (2011) for an application using NYSE market-maker inventory data, Menkveld
(2011) using data from a high-frequency trading firm’s inventory positions and Brogaard et al
(2012) using data on the aggregate trading of 26 high-frequency trading firms.

6 Filtered price estimates are more natural in the case of real-time trade decisions, which
necessarily only have historical information available.

7 Onmost days the fund traded in only one direction. However, on three days the fund bought
and sold shares. On those days, only the net trade enters the analysis, along with the average
price across all trades that day. For example, if the fund bought 35,000 shares at US$15 and
sold 5,000 shares at US$16, then the net trade that day was a buy of 30,000 shares at a price of
(35,000 x $15 — 5,000 x $16) /30,000 = $14.83.

8 There was no news released on HMST that day, and during the 11-11h30 period, the S&P 500
fell by 0.2%, compared with a share price drop of about 2% over the same interval in HMST.
Thus, it appears that most of the price moves documented here are idiosyncratic.

9 We also experimented with estimating the state-space model trade-by-trade rather than in
calendar time. We found relatively little persistence in the temporary component when the
model is estimated in trade time, most likely because the specification imposes an exponential
decay on the temporary component that does not seem to fit the trade-by-trade time series.
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In addition, the results were very sensitive to how we aggregated trades that are within a few
milliseconds of each other but are not exactly simultaneous.

10 See Dempster et al (1977) for EM and Shumway and Stoffer (1982) for EM and SSMs.

-
sy

Package documentation is at http://pykalman.github.com/.
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High-frequency trading (HFT) has become the norm in equities,
futures and options markets, and is quickly becoming commonplace
in foreign exchange and commodity markets. The influence of HFT
goes far beyond simply “speeding up” markets, but instead changes
everything from liquidity provision to order strategies to market sta-
bility. For regulators, HFT poses daunting challenges as to how best
to oversee markets in which computers generate, route and execute
orders. An added complexity is that HFT also ties markets together
atlightning speed, meaning that regulatory frameworks cannot sim-
ply apply to particular markets or even to specific asset classes. From
“flash crashes” tonew methods of manipulation, regulators now face
a host of problems.

In this chapter, we address the challenges of regulation in a high-
frequency world. We discuss in detail regulatory issues created by
HFT and how these differ from the problems facing regulators in
the past. We provide some specific examples of the problems raised
by HFT, and then turn to a discussion of the proposed solutions.
Our premise in this chapter is that, just as markets have changed in
fundamental ways, so, too, must their regulation and supervision.
Two issues are particularly important. First, the speed of markets
necessitates that regulation must move to an ex ante rather than ex
post basis. There is simply not enough time to intervene effectively
in markets after something has happened, so regulatory actions in
the event of faltering markets must be pre-specified and applied
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concurrently. Coincident with this change is the use of technology
to monitor markets in real time, in effect applying the same high-
frequency technology to supervise the markets as is being used by
traders in the markets. Second, regulatory structure must also explic-
itly address the role of uncertainty in affecting the behaviour and
stability of high-frequency markets. Speed can induce uncertainty
which, in turn, induces lack of participation. As we discuss in this
chapter, regulatory policies designed to limit uncertainty can play
an important role in limiting market instability.

In contemplating the new regulatory paradigm, it is useful first to
consider what role regulation plays in security markets. Arguably,
regulation should serve to make individual markets, and the capital
markets as a whole, work efficiently and effectively. This is a com-
plex task, as the role of individual markets is to provide liquidity
and price discovery, while the role of capital markets is to facilitate
risk-sharing for all investor classes and to foster capital provision.
Regulators have to make sure that markets do the former, but they
also have to ensure that in doing so the capital markets reach these
larger goals. This is not always straightforward, as the interests of
individual markets may conflict with the broader interests of the
overall capital markets. For example, it is in the financial interest
of exchanges to attract the greatest trading volume, and one way
to do so is to design trading systems that are more attractive to
high-frequency trading firms. If by doing so, however, market rules
disadvantage small traders, risk-sharing in capital markets will be
degraded. Similarly, a market may decide to allow particular trad-
ing practices that increase the potential for periodic illiquidity.! The
nature of linkages across high-frequency markets, however, means
that problems in one market can turn into systemic liquidity prob-
lems for all markets. The goal of regulation is to avoid these negative
outcomes while still retaining the benefits arising from the enhanced
HF technology. In the next section, we consider these trade-offs in
more detail.

REGULATING HIGH-FREQUENCY MARKETS: GOOD NEWS
AND BAD NEWS

Market quality is usually defined in terms of transaction costs and
market efficiency. By these metrics, high-frequency markets today
are “better” than markets in the pre-high-frequency era. Virtually
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every academic study of market quality has found that transac-
tion costs are lower now than in the past, and often by a substan-
tial amount.? Similarly, studies of market efficiency also conclude
that markets now reflect information more quickly than in the past,
resulting in prices more accurately reflecting underlying asset val-
ues (see, for example, O’'Hara and Ye 2011; Hendershott et al 2011;
Boehmer et al 2012; Hasbrouck and Saar 2013). Evidence from Bro-
gaard et al (2013) and Hagstromer and Nordén (2013) also sug-
gests that HFT is associated with lower volatility. From a regulatory
perspective, these studies provide welcome news that the market
structure appears to be working well.

Anatural concern is whether studies based on averages (for exam-
ple, average transaction costs or average variance ratios) fail to pick
up negative impacts of HFT on the market. Two issues are relevant
here. One is whether average effects mask negative effects on spe-
cific segments of the market. An intriguing study by Malinova ef
al (2012) looks specifically at how the introduction of message fees
in Canadian markets affected market quality and trading costs for
retail traders. High-frequency firms rely on the ability to submit and
cancel massive numbers of orders, and message charges fall dispro-
portionately on such traders. Malinova et al found that following the
change HF traders reduced their market activity significantly. Using
order level data, they also found the reduction of HF message traffic
increased both overall spreads and trading costs, in particular, for
retail traders. Their paper is provocative for giving hard evidence
that high-frequency activities per se can enhance market quality for
other market participants.

A second issue is whether measuring quality on average misses
important negative effects arising from infrequent, but periodic,
instability. Here concerns seem well founded, as markets world-
wide seem to have been experiencing more episodic illiquidity. The
US “flash crash” in May 2010 is instructive in this regard. The flash
crash, so-named because the entire event took place over a 30-minute
period, saw the E-mini S&P 500 futures fall by 8%, inducing a 1,000-
point fall in the Dow Jones index, and then a subsequent recovery
to near pre-crash levels. During the crash, prices in equity Exchange
Traded Funds (ETFs) plummeted, in some cases to zero, while prices
in individual equities both plunged and skyrocketed, reflecting that
order books had emptied. The transmission of illiquidity from what
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Figure 10.1 Flash crashes
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(a) US flash crash, May 6, 2012: black line (top), DJIA; mid-grey line (middle),
E-mini S&P 500; dark-grey line (bottom), S&P 500 Index. (b) India flash crash,
October 5, 2012.

Source: adapted from Bloomberg.

is the most liquid equity future contract to the equity market, as well
as the speed with which this occurred, was a wake-up call for both
markets and regulators. Figure 10.1 illustrates this US flash crash,
as well as a flash crash in India.? Unfortunately, there have now
been a variety of similar illiquidity events in settings around the
world, raising serious concerns about the stability of the HF market
structure.

How do we reconcile the apparent evidence of improved mar-
ket quality with the equally apparent evidence of decreased mar-
ket stability? The answer lies in recognising that the mechanics of
high-frequency markets are simply different from the mechanics of
markets heretofore. Liquidity provision, for example, results from
orders placed on electronic limit order books, and not from specific
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intermediaries (specialists or designated market makers) standing
ready to buy or sell. High-frequency traders place most of these pas-
sive orders and so are the new “market makers”. But HF market
making often arises as part of inter-market arbitrage, with comput-
erised programs placing bids in one market and offers in another.
Thereisno “intermediary” standing ready to buy or sell when liquid-
ity is needed in a given market. Moreover, these limit orders are all
placed (and cancelled) strategically in the book within milliseconds,
meaning that liquidity can be ephemeral. From a regulatory per-
spective, how to ensure that markets consistently provide liquidity
and price discovery is a problem.

The nature of trading has also changed, with algorithms now
directing most order flow, and direct market access (combined with
co-location) providing some traders with unprecedented ability to
get to markets before others. Algorithmic trading can greatly reduce
trading costs by timing and slicing orders both temporally and spa-
tially to find dispersed liquidity. But the deterministic nature of most
trading algorithms gives rise to new forms of market manipula-
tion such as layering, spoofing and quote stuffing.* In particular,
knowing that some traders (or, more precisely, computers acting for
traders) are executing orders via particular strategies such as VWAP
(ie, trading so as to achieve the volume-weighted average price over
some interval of time) allows other traders’ computers to take advan-
tage of their order behaviour. While some of this behaviour is legal
(for example, putting orders on the book to sell when algo-based
buying is predicted to be high), other behaviour is not, and it raises
new and important regulatory challenges.

Figure 10.2 illustrates one such manipulative strategy known as
layering. As discussed in O’Hara (2010), the data show a market
where a limit order to buy (shown by dots) is placed in the mar-
ket. A computer then rapidly places multiple buy orders (shown by
dashes) at prices just above the resting buy order, essentially raising
the quoted bid price. These orders are not “real”, as they are cancelled
almost instantaneously, but the intent is to force the algorithm hav-
ing placed the resting buy order to raise its price, essentially compet-
ing against itself. As the figure shows, this process continues, with
the limit price gradually going up. The episode would normally
end with the manipulative algorithm hitting (ie, selling to) the now
higher priced limit buy order, thereby making a profit by selling at
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Figure 10.2 Example of a layering strategy
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This figure shows what appears to be an automated strategy to induce an algo-
rithm to trade against itself. In the upper panel, the vertical axis shows prices, and
the horizontal axis time. The dots are limits orders to buy placed by an agency
algorithm, while the dashed lines are limit orders to buy placed by the predatory
algorithm. The predatory algorithm submits, and then immediately cancels, an
order, replacing it with an order at a higher price. The intent is to get the agency
algorithm to increase its bid, which in the example in the lower panel it does. The
predatory algorithm makes money if it can sell to the agency algorithm at the
higher price. In this example, the agency algorithm cancelled the order, and the
predatory algorithm resets and trolls for a new victim.

Source: ITG data (O’Hara 2010).

an artificially high price. In this particular case, the algorithm can-
celled the order, so no trade occurred, but the manipulative strategy
simply reset to try to entice a new algorithm to trade against itself.

The incidence of such manipulative strategies is clearly on the
rise, as demonstrated by a plethora of enforcement actions by the
Financial Industry Regulatory Authority (FINRA, the US regulator),
the Financial Conduct Authority (FCA, the UK regulator) and other
regulators around the time of writing. But the difficulty of discern-
ing such complex strategies in actual markets cannot be overstated,
leading to concerns that regulators are catching only egregious cases.
Moreover, new forms of manipulation emerge that are recognised
only after the fact. A case in point is “banging the beehive”, a colour-
fully named strategy in natural gas futures markets, where high-
speed traders send massive numbers of orders to a market right
before a scheduled data release, with the goal of creating large price
volatility. This strategy is designed to create “synthetic momentum”
and thereby take advantage of resting orders placed in anticipation
of the data release.> For regulators, the challenge of how to monitor
and police high-frequency markets is a daunting task.
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Of course, another way that high-frequency markets differ from
traditional markets is speed. Technological advances have always
emerged that increased the speed of the markets, but with markets
now already trading at microsecond speeds, recent innovations
involve thwarting the constraints imposed by the speed of light in
solid media. A case in point is a new joint venture of the Chicago
Mercantile Exchange (CME) and the Nasdaq (Javers 2013). By using
a network of towers to send microwave messages between their
respective data centres in Chicago and New ]Jersey, this linkage
shaves four milliseconds off of the time it takes ground-based cables
to transmit orders.®

What is unique now is that ultra-high speed raises concerns about
market failure due to technological glitches that can cause havoc in
a matter of moments. The Knight Trading debacle, where an out-of-
control algorithm caused a US$440 million loss in 43 minutes, is a
case in point. But, so too is the chaos surrounding Facebook’s open-
ing on Nasdaq, or any number of computer-related malfunctions
in which errant algorithms caused prices to spike or plummet in
markets.

What is particularly worrisome is market aberrations occurring
at, or near, market close. A market experiencing a liquidity event just
before the close has no opportunity to remediate what can be a dra-
matic fall in prices before trading ends. This, in turn, can cause other
markets to experience similar liquidity events, based on uncertainty
about what caused problems at the first market. For regulators, the
lessons of such market aberrations are clear: illiquidity contagion
now poses a systemic risk for world markets.

Aswe discuss in the next section, to avoid this outcome there must
be mechanisms in place that rapidly shut down faltering markets, or
even close markets in advance if possible. Contingencies regarding
end-of-day problems, such as allowing markets to reopen to allow a
more orderly close, must alsobe specified. Moreover, regulators have
to provide greater information to the markets regarding the nature
of market disturbances. An errant algorithm in one market right
before close, for example, should not result in worldwide market
closures.

But when, exactly, should regulators “pull the plug” on markets?
A case in point is the perplexing behaviour of the US equity markets
on July 19, 2012. Beginning soon after the open, the transaction prices
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Figure 10.3 Aberrant stock-price movements, July 19, 2012
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Source: adapted from Bloomberg.

of Apple, Coca-Cola, IBM and McDonald’s began exhibiting odd pat-
terns. As illustrated in Figure 10.3, each of these highly liquid stocks
began to oscillate, moving in what were clearly time-linked patterns
with turning points every 30 minutes. These patterns persisted for
several hours. Given that these stocks are among the largest in the
US market, how is it possible that anything could move prices that
way? And what trading strategy could possibly be in play that would
make this a desirable outcome? In this case, subsequent investiga-
tion found the culprit to be a wayward agency algorithm, and mar-
kets quickly returned to normal.” But the lesson is clear: in today’s
high-frequency markets, even the largest stocks and markets are not
immune to the influences of errant technology.

REGULATORY SOLUTIONS

What, then, should regulators do about high-frequency trading? Not
surprisingly, regulators around the world are asking this very ques-
tion. In the US, the “Flash Crash” Commission® recommended a vari-
ety of changes, including enhanced market halts and circuit break-
ers, increased information gathering and surveillance and changes
to trading priority rules. The European Union, as part of its MiFid I
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analysis, recommended a host of changes, including market-maker
obligations, minimum resting times, algorithmic trading restrictions
and transactions taxes. The UK commissioned an extensive study,
the Foresight Project, to evaluate many of these proposals. Germany
opted not to wait on the EU process, and passed its own High-
Frequency legislation.” Around the time of writing, Canadian reg-
ulators implemented sweeping changes with respect to pre-trade
risk controls and off-exchange trading. The Australian Securities
and Investment Commission undertook a six-month study of on
the impact of high-frequency trading in Australia, concluding that
HFT fears for their markets had been “overstated”.1°

The plethora of suggested reforms reflects the divergent views
surrounding HFT. For some, HFT is a technological advance that
requires adjustments to market surveillance and coordination. For
others, it has distorted the functioning of markets, and new rules
are needed to ensure proper market behaviour. Yet another group
views high-frequency trading as inherently wrong, and thus should
be removed from, or at least greatly reduced in, markets. A “middle
ground” has yet to emerge in this debate.

While reviewing all of these various proposals would be a
Herculean task, we now consider some of the more significant
proposals.

Proposals for greater surveillance and coordination

Instability in markets has revealed two basic problems facing regu-
lators: they do not have the technology needed to surveil the mar-
ket, and they do not have the capability to ensure that technology
used by firms and trading venues is not causing harm to the market.
The nature of these problems defies easy solutions, but one thing is
clear: regulators will have to adopt new methods and approaches
for overseeing these new, technology-based markets.

The US Securities and Exchange Commission (SEC) has focused
on developing new data and trading analytics. The foundation
for these efforts is the Market Information Data Analytics System
(MIDAS). In October 2012, the SEC commissioned Tradeworx, a
high-frequency trading firm, to develop this platform, essentially to
give the SEC the same analytical capabilities as the high-frequency
firms. Thus, the MIDAS system collects data on all quotes, trades,
orders and cancellations in “real” time. The system also allows for
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data analysis, providing the SEC with an ability to evaluate the mar-
ket on a real-time basis. SEC Commissioner Elisse Walter argues that
this will be revolutionary for regulators, likening it to “the first time
scientists used high-speed photography and strobe lighting to see
how hummingbirds” wings actually move” (Walter 2013).

A second, and related, initiative is the Consolidated Audit Tape
(CAT), which will include both public and non-public information,
such as the identities of traders submitting, cancelling or executing
orders. The CAT will allow the SEC to see across markets, an ability
surely needed given the fragmentation characterising the markets at
the time of writing. MIDAS and CAT together should also give the
SEC the ability to identify abusive trading behaviours (the spoofing,
quote stuffing, etc, discussed earlier), as well as provide a means to
identify incipient market problems.

Exactly how regulators accomplish this latter task is not clear. The
challenge with HF markets is that illiquidity can develop in millisec-
onds, but predictors of market instability are not typically defined
over such time scales. Researchers have begun to develop such tools,
with volume-synchronised probability of informed trading (VPIN;
Easley et al 2011) and quotation frequency measures (Madhavan
2012) both being examples of metrics that appear to signal market
instability. But much more work is needed to turn the data gener-
ated by these new projects into the knowledge needed to regulate
markets.

These new tools allow greater surveillance of market behaviour,
but in high-frequency markets it is better still to cut off problems
before they reach the market. This is the motivation for proposals
in both the US and the European Commission for algorithm stan-
dards and oversight. The SEC has proposed Regulation SCI, a series
of practices designed to improve system compliance and integrity.
Regulation SCI would replace the current voluntary oversight with
a compulsory system. Firms would be required to ensure that their
core technology meets certain standards, as well as to conduct peri-
odic business continuity testing. Firms would also be required to
notify regulators of any problems, outages, or discrepancies.

The European Union has taken a stronger stand, proposing spe-
cific rules for algorithm notification. The Markets in Financial Instru-
ments Directive (MiFid II, Article 17(2)) proposes that an investment
firm engaging in algorithmic trading must provide annually to the
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regulator a description of its algorithmic trading strategies, details of
the trading parameters and limits, the key compliance and risk con-
trols it has in place and details of the testing of its systems. Professor
Dave Cliff, writing in the Foresight Project (Government Office for
Science 2012), argues that this is both conceptually and financially
infeasible. Describing an algorithmic trading strategy requires not
only all the programs that have been written to implement it, but
also the full details of the code libraries used, as well as the software
tools involved. The description must include the actual computa-
tions required, the algorithms that affect the computations and full
details of how the algorithms are implemented. Regulators would
then have to evaluate the algorithms and determine the risk they
pose to the market. However, this would require substantial tech-
nical expertise, as well as considerable expense. Because algorithms
are updated frequently, such notification and review would have
to be done on a continuous basis. Germany has already adopted
rules requiring that algorithmic trading firms provide information
on trading algorithms to the regulators. It remains to be seen whether
this proposed requirement will be implemented more broadly in the
rest of Europe.

One area where changes have been made is to circuit break-
ers. Circuit breakers can take many forms: market-wide or single-
stock halts; limit-up and limit-down rules; restrictions to one trad-
ing venue or coordination across multiple venues. The London
Stock Exchange (LSE), for example, operates a stock-by-stock cir-
cuit breaker that, when triggered, switches trading to an auction
mode in which an indicative price is continuously posted while
orders are accumulated on either side. After some time, the auction is
uncrossed and continuous trading resumes. The trigger points that
determine the trading mechanism switching are in several bands
depending on the capitalisation and price level of the stock, and are
determined dynamically (relative to the last transaction price) and
statically (relative to the last auction uncrossing price).

In June 2010, the SEC mandated the use of single stock circuit
breakers that would halt trading in all markets when a stock price
moved 10% in a five minute period. At the time of writing these
circuit breakers were being replaced by limit-up/limit-down rules,
which wererolled out across all US stocks from April 2013. Limit-up /
limit-down essentially creates a rolling collar around a price, with
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trades outside of the collar being prohibited. Following a specified
time period, the collar is adjusted and trading can resume within
the new bounds. The advantage of such rules is that they prevent
obviously incorrect trades from printing; the disadvantage is that
they can slow the adjustment of prices to new equilibrium values.

A more daunting task is to impose market-wide circuit breakers.
What became painfully clear in the US flash crash was that efforts by
the NYSE to slow trading were neutralised by traders simply trading
in other markets. Moreover, the linkages in high-frequency markets
mean that problem in one market almost instantaneously spill over
into other markets. That futures and equities were so interlinked was
starkly illustrated when problems in futures turned into problems
in cash equities, which turned into problems in ETFs, which turned
into problems with futures.

The US had regulations requiring market-wide trading halts in
equities and futures, but the bounds defining these price moves were
so large that none of these were actually triggered during the flash
crash. A new structure has been put in place, pegging halts to the
S&P 500 Index (as opposed to the much smaller Dow Jones Index)
and specifying smaller price movements to trigger a halt. Europe,
with its much more decentralised exchange and markets system, has
not yet implemented such a structure. Singapore planned to adopt
market circuit breakers in the coming year, joining Australia, which
already has such rules in place at the time of writing. Most equity
markets have single stock circuit breakers.!!

Proposals to change market rules

Concurrent with the changes discussed above, there have been calls
for regulators to change features of market structure viewed as sub-
optimal in a high-frequency setting. One such proposal involves
the minimum tick size, which is the smallest allowable increment
between quoted prices in a market. Tick sizes have important impli-
cations for transaction costs, liquidity provision and stability. A
larger tick size, if binding, increases trading costs by widening the
spread between bid and offer prices, thereby rewarding liquidity
providers, whose trading model is to capture the spread. The tick
size determines how easy it is for another trader to ‘step ahead’ of an
existing limit order. In markets with a standard price/time priority
rule, an order placed first executes ahead of one placed later unless
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the later order is posted at a “better” price. Smaller tick sizes make it
easier for traders to post that better price, so smaller tick sizes push
up the cost for liquidity providers and for those traders who are not
able to react so quickly. Small tick sizes allow more price points for
trades and quotes, and so lead to more cancellations and revisions
and price movements, and hence perhaps longer times to execution.

There are important differences in minimum tick size policy
between the US and Europe. In the US, Regulation National Market
System requires thatin all “lit” venues (exchanges and large Alterna-
tive Trading Systems) stocks over US$1 are quoted with a minimum
tick size of 1¢, and sub-penny pricing is prohibited, except on dark
pools, where midpoint crossing is common. In Europe, there is no
mandated tick size and local exchanges are free to set their own tick
policy. As a result, there are generally a range of tick sizes operat-
ing on any given venue (typically, there are a number of categories
defined by the stock-price level'?). In addition, a European stock may
trade on different public venues under different tick size regimes,
whereas in the US such differences can only currently happen in
dark venues. Historically, the trend has been towards smaller tick
sizes since US trading in “eighths” (12.5¢) yielded to decimalisation
in 2000. Now, active stocks in the US typically trade at 1¢ spreads,
leading to concerns that a 1¢ minimum tick may be too large, thus
illustrating the above-mentioned trade-off between transaction costs
and liquidity provision. In Europe, spreads at minimum levels are
not as common, suggesting that the tick rules are not as binding on
market behaviour.

The question is whether tick size policy can be effective in dealing
with some of the ills of financial markets outlined above. Larger
tick sizes might make for more stable markets but would increase
transaction costs, especially for retail orders. They may favour some
types of HFT strategies (such as market making) but disadvantage
others (such as cross-venue arbitrage), and the net effect on this
industry is uncertain. Mandating common price grids for the same
stock on all public venues may reduce wasteful competition, but it
also needs to be balanced against the competition with dark venues
for order flow, where price grids are typically finer than in the public
space.

How then to determine tick sizes that balance these potentially
contradictory outcomes in an objective and transparent way? An
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important step in this process is the design and execution of care-
ful studies to quantify the trade-offs in current markets (along the
lines of the pilot study by the Federation of European Securities
Exchanges (FESE)).!3 In 2012 the SEC published a report on deci-
malisation, advocating pilot programmes for further study of this
issue (US Securities and Exchange Commission 2012).

At the time of writing there have been some regulatory devel-
opments. A report by the Australian regulators has found that for
some stocks the tick sizes were too large and that this had been
driving trading activity away from lit venues into dark pools with
negative consequences for price discovery. They have been seeking
industry views on lowering tick sizes for certain securities that are
tick constrained. The Autorité des Marchés Financiers (AMEF, the
French regulator) has developed a new tick size regime approach
that could be applied across the EU. Their proposal is based on
both the price and the liquidity (the average observed spread of
the stock, whereas the FESE tick size tables are determined solely
according to the share price). The German High-Frequency Trad-
ing (HFT) Bill (“Hochfrequenzhandelsgesetz”) requires that stan-
dardised minimum tick sizes be introduced on German trading
venues.

Another important market structure issue is the role of price
discrimination by trading venues through so-called maker—taker
pricing!* and volume discounts. Some argue that this pricing scheme
encourages “rebate arbitrage”, motivating trades that would not be
profitable without the rebate but are marginally so with it. These
trades are more likely to be associated with HF traders.

In electronic markets, liquidity is provided by limit orders posted
by passive traders willing to provide an option to active traders. The
more limit orders posted on a market, the more liquidity there is for
other traders to execute against. If there are no frictions in the market,
then the bid—ask spread settles at a level that exactly compensates
the providers of liquidity with the value received by takers of liquid-
ity. But real markets do have frictions (such as non-zero tick sizes),
so fee and pricing models are not irrelevant. By paying those who
make liquidity while charging those who take liquidity, maker—taker
pricing has the potential to improve the allocation of the economic
benefits of liquidity production. This, in turn, can incentivise poten-
tial suppliers of liquidity and lead to faster replenishment of the
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limit order book. Varying maker—taker fees with market conditions
also provides a means to improve liquidity provision during times
of market stress. A recommendation to have such time-varying fee
structures was one finding of the “Flash Crash” Commission.

Maker—taker pricing can also be an effective way for new market
venues to compete against established venues. Smart order-routing
systems can direct order flow to venues with more aggressive pricing
models. That can, in turn, put pressure on fees in other markets and
lead to more competitive pricing. The success of BATS in the US is
often attributed to their aggressive use of maker-taker pricing.!>

High-frequency traders are generally better able to put their limit
orders at the top of the queue, due to their speed advantage, their use
of sophisticated order types such as “hide not slide”'® and their use
of “big data” to forecast market movements. The maker-taker fee
structure may incentivise them to do so even more, with the result
that institutional investors’ limit orders are executed only if high-
frequency traders find it uneconomical to step in front. It follows that
institutional investors will hold back from submitting limit orders,
leaving the market vulnerable to transient participation by high-
frequency traders during times of market stress. This, in turn, could
exacerbate episodes of periodic illiquidity.

Italso follows that because institutional investors would then sub-
mit more market orders, they would face increased costs arising from
bid-ask spreads, and taker fees. This problem of higher trading costs
can be compounded if the routing decisions taken by intermediaries
on behalf of clients are influenced in a suboptimal way by the fee
structure offered by disparate venues. In particular, the broker may
opt to send orders to venues offering suboptimal execution in return
for rebates that are not passed on to the originating investor. This
incentive will be even greater if these rebates are volume dependent.
It may not be easy to monitor such practices.

A complex system of maker-taker pricing that is context and
venue dependent can confuse market participants and lead to erro-
neous decisions. This may be particularly true if markets vary fees
and rebates across time. Because spreads can vary, it is not entirely
clear how much incremental effect on liquidity will arise from
time-varying rebates.

There is little evidence in the academic literature that high-
frequency traders have been “abusing” the existing fee structure.
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Overall, the limited evidence suggests that maker—taker pricing
improves depth and trading volume without negatively affecting
spreads. In addition, the explicit trading fees on most venues have
fallen substantially since around 2008, benefiting both makers and
takers of liquidity (Chesini 2012).

A third area of market structure concern is whether orders sent
to the book are too transient. Proposals to address this issue involve
minimum resting times or the minimum time that a limit order must
remain in force. While, in principle, minimum resting times could
depend on factors such as trade side (buy or to sell), volatility or other
market conditions, typically a uniform time span is proposed, such
as 500 milliseconds. The impetus for imposing a minimum is that
markets feature a large number of fleeting orders that are cancelled
very soon after submission. This increases the costs of monitoring
the market for all participants, and reduces the predictability of a
trade’s execution quality, since the quotes displayed may have been
cancelled by the time the marketable order hits the resting orders.

The nature of high-frequency trading across markets and the
widespread usage of hidden orders on exchanges are responsible
for some of this fleeting order behaviour. However, frequent can-
celling of quotes may also result from abusive strategies (the spoof-
ing, layering and quote stuffing noted earlier), which can undermine
market quality or, at the least, create a bad public perception, and
a minimum resting time may allay concerns that the markets are
“unfair”.

Minimum resting times can increase the likelihood of a viewed
quote being available to trade. This has two important benefits. First,
it provides the market with a better estimate of the current mar-
ket price, something which “flickering quotes” caused by excessive
order cancellations obfuscates. Secondly, its visible depth at the front
of the book should be more aligned with the actual depth. Quotes
left further away from the current best bid or offer are less likely to be
affected by the measure, since the likelihood of them being executed
within a short time is small.

The drawback of minimum resting times lies in the fact that post-
ing a limit order offers a free option to the market that is exercised
at the discretion of the active trader. If an active trader has better or
newer information, the limit order poster will be adversely selected,
buying when the stock is going down and selling when the stock
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is going up. As with any option, its value increases with time to
maturity and with volatility. Thus, forcing a limit order to be in force
longer gives a more valuable option to the active trader, and conse-
quently raises the cost of being a limit order provider. The expected
result would be an increase in the bid-offer spread or decreased
depth, as posting limit orders will be less attractive. Assuming limit
order submission remained unaffected, the Foresight Report esti-
mates that the cost of hitting such stale quotes may be as high as
€1.33 billion per year in Europe.

This reluctance to post limit orders will be particularly acute dur-
ing times of high volatility, when the cost of posting the option
is naturally increased. This has the undesirable implication that
liquidity provision will be impeded just at the times when mar-
kets need it most. It also suggests that there could be a feed-
back effect if increasing volatility triggers orders, further increasing
volatility.

Another proposed market structure change is to put an upper limit
on the ratio of orders to executions. The idea of such restrictions is
to encourage traders to cancel fewer orders, thereby providing a
more predictable limit order book. It is hoped that such predictabil-
ity will improve investor confidence in the market. As cancellations
and resubmissions form the bulk of market message traffic, this pro-
posal would also reduce traffic and the consequent need for market
participants to provide increasing message capacity in their trad-
ing systems. A number of exchanges have some restrictions on mes-
sages or the order/traderatio. So there are sensible exchange-specific
measures already in place that constrain the total message flow and
price the externality those messages contribute. Germany has taken
this further by requiring all exchanges in Germany to implement
order-to-trade restrictions.

Receiving, handling and storing messages is costly for exchanges,
brokers and regulators. Whenever an economic good is not priced
there is a tendency to use more of it than if the user had to pay its
actual costs. If the social cost of messages exceeds its private costs, an
externality results; the standard solution is to tax messages. A ratio
of orders-to-executions does this to some extent, and it can serve to
align these private and social costs, thereby reducing the number of
economically excessive messages and the temptation to slow down
matching engines by quote stuffing markets. This, in turn, reduces
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the need for exchanges, brokers and other market participants to
investin costly capacity and it may also alleviate concerns of various
manipulative strategies.

On the cost side, the nature of trading and market making in
fragmented markets naturally implies order cancellations. Algo-
rithmic trading, for example, seeks to reduce trade execution costs
by splitting large orders into smaller pieces and sending orders
both spatially and temporally to markets. As orders execute or lan-
guish, the execution strategy recalibrates, leading to cancellations
and resubmissions. Such a trading approach reduces execution costs
for traders and leads to greater efficiency in execution. Many HFT
strategies (including HFT market making) involve statistical arbi-
trage across markets whereby movements in a price in one market
(eg,inan ETF) trigger orders sent to other markets (eg, the potentially
large number of ETF underlying stocks or bonds). Again, subsequent
price movements in any of the markets will trigger cancellations
and resubmissions as part of the process of reducing price discrep-
ancies and enhancing market efficiency. Stifling such cross-market
arbitrage trades would lead to inefficient pricing.

Many order cancellations result from searching for hidden liquid-
ity on limit order books by “pinging” or sending small orders inside
the spread to see if there is hidden liquidity. Because such orders are
typically cancelled, a binding order-to-trade ratio would result in
less pinging and, therefore, less information being extracted at the
touch (the best bid and ask prices). As a result, more hidden orders
will be posted, leading to a less transparent limit order book. A sec-
ond effect on the book may arise because orders placed away from
the touch have the lowest probability of execution. In a constrained
world, these orders may not get placed, meaning that depth may
be removed from the book away from touch. The Foresight Report
investigated the effect of the introduction of an order-to-execution
ratio (OER) penalty regime on the Milan Borsa on April 2, 2012.
The preliminary findings (the authors of the report acknowledge
some issues with their methodology, given the short time available)
were that liquidity (spreads and depth) worsened as a result of this
policy measure, with the effect more pronounced in large stocks.
Similarly, anecdotal evidence suggests that the LSE message policy
was not fully effective in that it gave rise to new patterns of trade in
low-priced stocks.
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An OER is a blunt measure that catches both abusive and bene-
ficial strategies. It may not do too much harm if the upper limit is
large enough not to hinder market making and intermediation, but
to the extent that it is binding on those activities it may be detrimen-
tal to both spreads and liquidity. It is unlikely that a uniform OER
across markets would be optimal, because it depends upon the type
of securities traded and the trader clientele in the market.

Proposals to curtail high-frequency trading

A third direction for proposed regulation focuses more on curtail-
ing, if not completely eliminating, high-frequency trading. At the
forefront of these proposals is the Financial Transactions Tax (FTT).
Such a tax has a long pedigree, having been proposed by a num-
ber of famous economists, including Keynes (in 1936) and Tobin
(in 1972), at times of previous financial crisis. On September 28,
2011, the European Commission put forward a detailed proposal
for an EU-wide FIT (European Commission 2011). The proposed
tax covers a wide range of financial instruments. One of the stated
objectives of the proposed tax is to create “appropriate disincentives
for transactions that do not enhance the efficiency of financial mar-
kets thereby complementing regulatory measures aimed at avoiding
future crises” (European Commission 2013). The Commission’s tar-
gets here include short-term trading, particularly automated and
high-frequency trading.

The UKhashad a “stamp duty” on shares since 1694, with a rate of
0.5% at the time of writing. However, registered market participants
are exempt from this tax, so it only falls on the beneficial owners
rather than on the intermediary chain. Also, it applies to equities
only, and not to close substitutes. The EU proposal is to apply the
tax to all transactions. The figure of 0.1% is widely quoted in this
regard. This should be compared with the typical transaction fees
charged by trading venues across Europe, which seldom exceeds
0.005%, so that the magnitude of the tax rate is substantial and likely
to be binding on behaviour.

At the time of writing became clear that the proposal would not
achieve the unanimous support of EU Member States as required for
it tobe adopted across the EU. Numerous concerns have been raised,
including: the potential negative effects on GDP, in part resulting
from an increase in the cost of capital and hence a decline in invest-
ment; the susceptibility of the tax to avoidance through relocation
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unless it was adopted at a global level; and the uncertainty as to the
bearers of the economic incidence of the tax. However, supporters
of the proposal dismiss these concerns, and a number of Member
States have been considering implementing a financial transaction
tax through the enhanced cooperation procedure. Subject to a num-
ber of conditions, this procedure would allow a sub-group of Mem-
ber States to introduce measures that only bind the participating
states.

Apart from their revenue-raising potential, the perceived correc-
tive function of these taxes is also often cited in their support. Propo-
nents argue that such taxes can produce positive effects on financial
markets by increasing the cost and reducing the volume of short-
term trading. Crucially, this argument is based on a view of short-
term trading as being mostly speculative (often supported by or
based on trading systems) and unrelated to market fundamentals.
This form of trading is thus viewed as having a negative impact on
financial markets by contributing to excessive liquidity, excessive
price volatility and asset bubbles. Furthermore, it is argued that the
increasing ratio of financial transactions to GDP suggests consider-
able socially unproductive financial activity and hence a waste of
resources. Financial transaction taxes are also seen as a way of com-
pensating for the fact that many financial services are exempt from
Value Added Tax (VAT).

In response it has been pointed out that:

e not all short-term trading is “undesirable”;

e financial transaction taxes do not distinguish between long-
term and short-term trading or between “desirable” and
“undesirable” short-term trading;'”

e such taxes might not affect volatility or might even increase
it because they reduce liquidity in markets and create a ran-
dom wedge between prices of identical securities traded across
multiple venues;

e asset bubbles may also develop in the presence of high
transaction costs, as documented by real estate bubbles; and

e itisneither obvious what the ideal ratio of financial activity to
GDP should be, nor clear whether this ratio should increase or
decrease over time, or how it should compare say with the ratio
of health-care expenditure to GDP or legal services to GDP.
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Finally, the VAT exemption of financial services reflects the difficul-
ties of applying VAT to margin-based financial services. Financial
transaction taxes cannot solve this problem for a number of reasons.
Mostimportantly, financial transactions taxes donot tax value added
in the financial sector.

There have been a number of academic studies, both theoretical
and empirical, on the effect of financial transaction taxes, and trans-
action costs more generally. Overall, the results suggest that financial
transactions taxes will give rise to significant relocation effects to tax
havens, cannot be expected to reduce price volatility in asset markets
and will bring about a sizable drop in market capitalisation that will
be borne by the holders of the securities, including pension funds,
whether or not they trade repeatedly or bear the FIT. For instance, a
simple back-of-the-envelope calculation suggests that with plausi-
ble numbers such as an annual turnover of equity portfolios of 44%,
an FTT of 0.1% and a dividend yield of 1.1%, the drop in market
value is around 4.2%.

The experiences of France and Italy, both early adopters of an
FTT, around the time of writing have underscored concerns with
implementing such a tax. For France, tax revenues have been half of
expected levels, reflecting the negative impact that such taxes have
onoverall trading. The paper by Haferkorn and Zimmermann (2013)
on the French FTT find increased spread levels, and a strong decline
in top order-book depth, resulting in additional transaction costs for
market participants besides the tax. They also find that inter-market
transmissions are impaired in that price dispersion between venues
is significantly deteriorated and transient exogenous shocks create
much slower reversions to fair value. Italy experienced a similar fall
in volume (Fairless 2013). What have not been demonstrated are
any positive effects on market quality, an issue that clearly warrants
additional research.

A more direct assault on high-frequency trading is found in Ger-
many’s Hochfrequenzhandelsgesetz legislation. As noted earlier, the
German Act on the Prevention of Risks Related to, and the Abuse
of, High-Frequency Trading sets out a variety of restrictions on both
high-frequency trading firms and practices. While the constraints
on practices mirror the MiFID proposals discussed earlier, the con-
straints on HFT firms may be of more consequence. German law will
require HFT firms to obtain a license for financial trading institutions
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and comply with the minimum capital requirements for financial
trading institutions. This licensing requirement will apply both to
HFT firms who are members of German exchanges and to those
who simply trade via direct access to German markets.

How significant a constraint this will be remains to be seen, but
the greater capital requirement and regulatory burden will surely
raise the costs of high-frequency trading.'®

Whether it will improve the markets is less apparent. Remov-
ing HFT firms will also remove liquidity. This would be expected
to increase spreads and reduce depths, raising transaction costs
for traders. It may also increase the cost of capital for firms, as
traders require greater compensation to invest in less liquid secu-
rities, and newly listed firms find it hard to attract sufficient liq-
uidity to sustain trading interest. A final verdict on the effective-
ness of this regulatory approach awaits a careful study of its market
impacts.

Jean-Pierre Zigrand acknowledges financial support by the Eco-
nomic and Social Research Council (UK), Grant number ESRC/
BSB/05.

1 For example, markets may allow certain types of orders (such as orders that immediately
cancel under certain conditions or the “hide or slide” orders designed to game the US trade-
through rules) that could cause large changes in the order book almost instantaneously.

2 Excellent surveys of the academic literature are Chapter 4 of the Foresight Project (Linton et al
2012) and Jones (2013).

3 The Indian flash crash is an interesting case in point. On October 5, 2012, trading on the
National Stock Exchange (NSE) was halted for 15 minutes following a sudden drop of
920 points in the NSE Index (known as the Nifty). Subsequent investigation revealed that
this flash crash was due to a “fat finger” problem arising from errant orders placed by a
Mumbai-based brokerage.

4 As explained in the FINRA News Release, September 25, 2012, “Spoofing is a form of mar-
ket manipulation which involves placing certain non-bona fide order(s), usually inside the
existing National Best Bid or Offer (NBBO), with the intention of triggering another market
participant(s) to join or improve the NBBO, followed by canceling the non-bona fide order,
and entering an order on the opposite side of the market. Layering involves the placement
of multiple, non-bona fide, limit orders on one side of the market at various price levels at
or away from the NBBO to create the appearance of a change in the levels of supply and
demand, thereby artificially moving the price of the security. An order is then executed on the
opposite side of the market at the artificially created price, and the non-bona fide orders are
immediately canceled”. Quote stuffing involves sending and cancelling massive numbers of
orders with the intent of taking all available bandwidth and thereby preventing other traders
from being able to submit orders.

5 For details of this strategy see Dicolo and Rogow (2012).

6 Basically, due to the curvature of the Earth, sending the messages from towers reduces the
distance travelled relative to sending the messages along the ground. This, combined with
use of the microwave propagation (which is marginally faster than fibre-optic propagation),
allows the messages to be received more quickly.
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An agency algorithm is one that is executing an order on behalf of a client.

The Commodity Futures Trading Commission-Securities and Exchange Commission (CTFC-
SEC) Task Force on Emerging Market Issues.

On May 15, 2013, the “Act on the Prevention of Risks Related to, and the Abuse of High-
Frequency Trading” was enacted.

See “Australia finds HFT fears ‘overstated’”, Financial Times, March 18, 2013.

See the “Markets Trading Guide”, Crédit Agricole (2012) at http://www.cheuvreux.com/
pdf/Markets_trading_guide.pdf.

For comparison, in online (one-sided) auctions such as eBay, the minimum bid increments
vary with price level and are much wider than the corresponding tick sizes for similarly priced
stocks. See http://pages.ebay.com/help/buy/bid-increments.html.

Since March 2009, FESE has been in negotiations with the London Investment Banking Asso-
ciation and some multilateral trading facilities (BATS, Chi-X, Nasdaq Europe and Turquoise)
to harmonise the tick size regimes in Europe (which stood at approximately 25 across the
EU) in the interest of achieving benefits to markets, users and investors by simplifying the
complexity and number of regimes in place.

Maker-taker pricing refers to the practice in many exchanges and trading platforms of paying
asmall rebate to executed orders that were placed as passive limit orders (the liquidity makers)
and charging a fee to active orders that hit existing limit orders (the liquidity takers).

Direct Edge operated the reverse taker-maker system back in 2008, before switching to maker—
taker pricing.

This order type has been publicised by the “HFT whistleblower”, Haim Bodek. See Patterson
and Strasburg (2012) for a description.

Bloomfield et al (2009) analyse the distributional effects of security transactions taxes and
find that, while successful in curtailing uninformed trading, these taxes have negative
consequences for informational efficiency.

The HFT firm CIT announced plans to shut down, citing the potential for significant costs
from new HFT regulations (Cave 2013).
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